Skip to main content
Erschienen in: Journal of Materials Science 16/2016

18.05.2016 | Original Paper

EBSD characterization of shear band formation in aluminum armor alloys

verfasst von: T. Kozmel, M. Vural, S. Tin

Erschienen in: Journal of Materials Science | Ausgabe 16/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The shear-compression behavior of four commercial aluminum armor alloys, 2139, 2519, 5083, and 7039, that exhibit enhanced resistance to high-strain-rate deformation, were evaluated using a Split Hopkinson Pressure Bar. Each of the alloys was found to exhibit a characteristic critical equivalent strain beyond which plastic collapse of the material occurred. Microstructural changes were systematically quantified as a function of equivalent strain using electron backscatter diffraction along with the effects of crystallographic orientation, secondary particles, and solid solution strengthening on the accumulation of localized strain within the microstructure. The onset of the plastic collapse was determined to correlate with an equivalent strain where nominally all of the grains within the microstructure exhibited characteristics associated with adiabatic shear band formation. The rapid decline of the flow stress during plastic collapse was found to be enhanced by grain fragmentation and refinement in regions of high stress concentrations. Results from this study suggest that improvements in the performance of these Al armor alloys may potentially be achieved through careful control of their processing, in particular with respect to their texturing and the dispersion of secondary particles in the microstructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vural M, Caro J (2009) Experimental analysis and constitutive modeling for the newly developed 2139-T8 alloy. Mater Sci Eng A 520:56–65CrossRef Vural M, Caro J (2009) Experimental analysis and constitutive modeling for the newly developed 2139-T8 alloy. Mater Sci Eng A 520:56–65CrossRef
2.
Zurück zum Zitat Fisher JJ Jr, Kramer LS, Pickens JR (2002) Aluminum alloy 2519 in military vehicles. Adv Mater Process 160(2):43–46 Fisher JJ Jr, Kramer LS, Pickens JR (2002) Aluminum alloy 2519 in military vehicles. Adv Mater Process 160(2):43–46
3.
Zurück zum Zitat Placzankis BE, Charleton EA, Fowler AL (2009) Accelerated corrosion and adhesion assessments of Carc prepared aluminum alloy 2139-T8 using three various pretreatment methods and two different primer coatings. In: DoD corrosion conference 2009. Gaylord National, Washington DC Placzankis BE, Charleton EA, Fowler AL (2009) Accelerated corrosion and adhesion assessments of Carc prepared aluminum alloy 2139-T8 using three various pretreatment methods and two different primer coatings. In: DoD corrosion conference 2009. Gaylord National, Washington DC
4.
Zurück zum Zitat Gao Z, Zhang X, Chen M (2008) Influence of strain rate on the precipitate microstructure in impacted aluminum alloy. Scr Mater 59:983–986CrossRef Gao Z, Zhang X, Chen M (2008) Influence of strain rate on the precipitate microstructure in impacted aluminum alloy. Scr Mater 59:983–986CrossRef
5.
Zurück zum Zitat Pérez-Bergquist SJ, Gray GT III, Cerreta EK, Trujillo CP, Pérez-Bergquist A (2011) The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039. Mater Sci Eng A 528:8733–8741CrossRef Pérez-Bergquist SJ, Gray GT III, Cerreta EK, Trujillo CP, Pérez-Bergquist A (2011) The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039. Mater Sci Eng A 528:8733–8741CrossRef
6.
Zurück zum Zitat Cho A, Bes B (2006) Damage tolerance capability of an Al–Cu–Mg–Ag alloy (2139). Mater Sci Forum 519–521:603–608CrossRef Cho A, Bes B (2006) Damage tolerance capability of an Al–Cu–Mg–Ag alloy (2139). Mater Sci Forum 519–521:603–608CrossRef
7.
Zurück zum Zitat Polmear IJ (2004) Aluminium alloys—a century of age hardening. Mater Sci Forum 28:1–14 Polmear IJ (2004) Aluminium alloys—a century of age hardening. Mater Sci Forum 28:1–14
8.
Zurück zum Zitat Muddle BC, Polmear IJ (1989) The precipitate Ω phase in Al–Cu–Mg–Ag alloys. Acta Metall 37(3):777–789CrossRef Muddle BC, Polmear IJ (1989) The precipitate Ω phase in Al–Cu–Mg–Ag alloys. Acta Metall 37(3):777–789CrossRef
9.
Zurück zum Zitat Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A 31:691–701CrossRef Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A 31:691–701CrossRef
10.
Zurück zum Zitat Bakavos D, Prangnell PB, Bes B, Eberl F (2008) The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to a T8 temper. Mater Sci Eng A 491:214–223CrossRef Bakavos D, Prangnell PB, Bes B, Eberl F (2008) The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to a T8 temper. Mater Sci Eng A 491:214–223CrossRef
11.
Zurück zum Zitat Lee WM (2008) Dynamic microstructural characterization of high strength aluminum alloys” (thesis). North Carolina State University, Raleigh, North Carolina Lee WM (2008) Dynamic microstructural characterization of high strength aluminum alloys (thesis). North Carolina State University, Raleigh, North Carolina
12.
Zurück zum Zitat Elkhodary K, Sun L, Irving DL, Brenner DW, Ravichandran G, Zirky MA (2009) Integrated experimental, atomistic, and microstructurally—based finite—element investigation of the dynamic compressive behavior of 2139 aluminum. J Appl Mech 76:051306-1–051306-9CrossRef Elkhodary K, Sun L, Irving DL, Brenner DW, Ravichandran G, Zirky MA (2009) Integrated experimental, atomistic, and microstructurally—based finite—element investigation of the dynamic compressive behavior of 2139 aluminum. J Appl Mech 76:051306-1–051306-9CrossRef
13.
Zurück zum Zitat Lee WM, Zirky MA (2011) Microstructural characterization of a high-strength aluminum alloy subjected to high strain-rate impact. Metall Mater Trans A 42A:1215–1221CrossRef Lee WM, Zirky MA (2011) Microstructural characterization of a high-strength aluminum alloy subjected to high strain-rate impact. Metall Mater Trans A 42A:1215–1221CrossRef
14.
Zurück zum Zitat Polmear IJ, Chester RJ (1989) Abnormal age hardening in an Al–Cu–Mg alloy containing silver and lithium. Scr Metall 23:1213–1217CrossRef Polmear IJ, Chester RJ (1989) Abnormal age hardening in an Al–Cu–Mg alloy containing silver and lithium. Scr Metall 23:1213–1217CrossRef
15.
Zurück zum Zitat Vaughan D (1968) Grain boundary precipitation in an Al–Cu alloy. Acta Metall 16:563–577CrossRef Vaughan D (1968) Grain boundary precipitation in an Al–Cu alloy. Acta Metall 16:563–577CrossRef
16.
Zurück zum Zitat Gable BM, Shiflet GJ, Starke EA Jr (2006) Alloy development for the enhanced stability of Ω precipitates in Al–Cu–Mg–Ag alloys. Metall Mater Trans A 37A:1091–1105CrossRef Gable BM, Shiflet GJ, Starke EA Jr (2006) Alloy development for the enhanced stability of Ω precipitates in Al–Cu–Mg–Ag alloys. Metall Mater Trans A 37A:1091–1105CrossRef
17.
Zurück zum Zitat Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef
18.
Zurück zum Zitat Elkhodary K, Lee W, Sun LP, Brenner DW, Zirky MA (2011) Deformation mechanisms of an Ω precipitate in a high-strength aluminum alloy subjected to high strain rates. J Mater Res 26(4):487–497CrossRef Elkhodary K, Lee W, Sun LP, Brenner DW, Zirky MA (2011) Deformation mechanisms of an Ω precipitate in a high-strength aluminum alloy subjected to high strain rates. J Mater Res 26(4):487–497CrossRef
19.
Zurück zum Zitat Woodward RL (1984) The interrelation of failure modes observed in the penetration of metallic targets. Int J Impact Eng 2(2):121–129CrossRef Woodward RL (1984) The interrelation of failure modes observed in the penetration of metallic targets. Int J Impact Eng 2(2):121–129CrossRef
20.
Zurück zum Zitat Knowles KM, Stobbs WM (1988) The structure of 111 age-hardening precipitates in Al–Cu–Mg–Ag alloys. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 44:207–227CrossRef Knowles KM, Stobbs WM (1988) The structure of 111 age-hardening precipitates in Al–Cu–Mg–Ag alloys. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 44:207–227CrossRef
21.
Zurück zum Zitat Embury JD (1985) Plastic flow in dispersion hardened materials. Metall Trans A 16A:2191–2200CrossRef Embury JD (1985) Plastic flow in dispersion hardened materials. Metall Trans A 16A:2191–2200CrossRef
22.
Zurück zum Zitat Beffort O, Solenthaler C, Speidel MO (1995) Improvement of strength and fracture toughness of a spray-deposited Al–Cu–Mg–Ag–Mn–Ti–Zr alloy by optimized heat treatments and thermomechanical treatments. Mater Sci Eng A 191:113–120CrossRef Beffort O, Solenthaler C, Speidel MO (1995) Improvement of strength and fracture toughness of a spray-deposited Al–Cu–Mg–Ag–Mn–Ti–Zr alloy by optimized heat treatments and thermomechanical treatments. Mater Sci Eng A 191:113–120CrossRef
23.
Zurück zum Zitat Trotten GE, MacKenzie DS (2003) Handbook of aluminum—Al–Zn–Mg alloys. Marcel Dekker Inc., Hoboken, pp 185–194CrossRef Trotten GE, MacKenzie DS (2003) Handbook of aluminum—Al–Zn–Mg alloys. Marcel Dekker Inc., Hoboken, pp 185–194CrossRef
24.
Zurück zum Zitat Choi D-H, Ahn B-W, Quesnel DJ, Jung S-B (2013) Behavior of β phase (Al 3 Mg 2) in AA 5083 during friction stir welding. Intermetallics 35:120–127CrossRef Choi D-H, Ahn B-W, Quesnel DJ, Jung S-B (2013) Behavior of β phase (Al 3 Mg 2) in AA 5083 during friction stir welding. Intermetallics 35:120–127CrossRef
25.
Zurück zum Zitat Xia SL, Ma M, Zhang JX, Wang WX, Liu WC (2014) Effect of heating rate on the microstructure, texture and tensile properties of continuous cast AA 5083 aluminum alloy. Mater Sci Eng A 609:168–176CrossRef Xia SL, Ma M, Zhang JX, Wang WX, Liu WC (2014) Effect of heating rate on the microstructure, texture and tensile properties of continuous cast AA 5083 aluminum alloy. Mater Sci Eng A 609:168–176CrossRef
26.
Zurück zum Zitat Huskins EL, Cao B, Ramesh KT (2010) Strengthening mechanisms in an Al–Mg alloy. Mater Sci Eng A 527:1292–1298CrossRef Huskins EL, Cao B, Ramesh KT (2010) Strengthening mechanisms in an Al–Mg alloy. Mater Sci Eng A 527:1292–1298CrossRef
27.
Zurück zum Zitat Polmear IJ (2006) Light alloys: from traditional alloys to nanocrystals. Elsevier/Butterworth-Heinemann, Burlington, pp 53–56 Polmear IJ (2006) Light alloys: from traditional alloys to nanocrystals. Elsevier/Butterworth-Heinemann, Burlington, pp 53–56
28.
Zurück zum Zitat Paul H, Driver JH, Jasieński J (2002) Shear banding and recrystallization nucleation in a Cu–2 % Al alloy single crystal. Acta Mater 50:815–830CrossRef Paul H, Driver JH, Jasieński J (2002) Shear banding and recrystallization nucleation in a Cu–2 % Al alloy single crystal. Acta Mater 50:815–830CrossRef
29.
Zurück zum Zitat Lins JFC, Sandim HRZ, Kestenbach H-J, Raabe D, Vecchio KS (2007) A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng A 457:205–218CrossRef Lins JFC, Sandim HRZ, Kestenbach H-J, Raabe D, Vecchio KS (2007) A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng A 457:205–218CrossRef
30.
Zurück zum Zitat Xue Q, Bingert JF, Henrie BL, Gray GT III (2008) EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 stainless steels. Mater Sci Eng A 473:279–289CrossRef Xue Q, Bingert JF, Henrie BL, Gray GT III (2008) EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 stainless steels. Mater Sci Eng A 473:279–289CrossRef
31.
Zurück zum Zitat Salem HG, Lee WM, Bodelot L, Ravichandran G, Zirky MA (2012) Quasi-static and high-strain-rate experimental microstructural investigation of a high-strength aluminum alloy. Metall Mater Trans A 43A:1895–1901CrossRef Salem HG, Lee WM, Bodelot L, Ravichandran G, Zirky MA (2012) Quasi-static and high-strain-rate experimental microstructural investigation of a high-strength aluminum alloy. Metall Mater Trans A 43A:1895–1901CrossRef
32.
Zurück zum Zitat Srivatsan TS, Guruprasad G, Vasudevan VK (2008) The quasi static deformation and fracture behavior of aluminum alloy 7150. Mater Des 29:742–751CrossRef Srivatsan TS, Guruprasad G, Vasudevan VK (2008) The quasi static deformation and fracture behavior of aluminum alloy 7150. Mater Des 29:742–751CrossRef
33.
Zurück zum Zitat Zhang H, Lin GY, Peng DS, Yang LB, Lin QQ (2004) Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation. J Mater Process Technol 148:245–249CrossRef Zhang H, Lin GY, Peng DS, Yang LB, Lin QQ (2004) Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation. J Mater Process Technol 148:245–249CrossRef
34.
Zurück zum Zitat Li Y, Liu Z, Lin L, Peng J, Ning A (2011) Deformation behavior of an Al–Cu–Mg–Mn–Zr alloy during hot compression. J Mater Sci 46:3708–3715CrossRef Li Y, Liu Z, Lin L, Peng J, Ning A (2011) Deformation behavior of an Al–Cu–Mg–Mn–Zr alloy during hot compression. J Mater Sci 46:3708–3715CrossRef
35.
Zurück zum Zitat Jia N, Eisenlohr P, Roters F, Raabe D, Zhao X (2012) Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater 60:3415–3434CrossRef Jia N, Eisenlohr P, Roters F, Raabe D, Zhao X (2012) Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater 60:3415–3434CrossRef
36.
Zurück zum Zitat O’Donnell RG, Woodward RL (1988) Instability during high strain rate compression of 2024 T351 aluminium. J Mater Sci 23:3578–3587CrossRef O’Donnell RG, Woodward RL (1988) Instability during high strain rate compression of 2024 T351 aluminium. J Mater Sci 23:3578–3587CrossRef
37.
Zurück zum Zitat Wu GH, Zhu DZ, Chen GQ, Jiang LT, Zhang Q (2008) Adiabatic shear failure of high reinforcement content aluminum matrix composites. J Mater Sci 43:4483–4486CrossRef Wu GH, Zhu DZ, Chen GQ, Jiang LT, Zhang Q (2008) Adiabatic shear failure of high reinforcement content aluminum matrix composites. J Mater Sci 43:4483–4486CrossRef
38.
Zurück zum Zitat Osovski S, Rittel D, Landau P, Venkert A (2012) Microstructural effects on adiabatic shear band formation. Scr Mater 66:9–12CrossRef Osovski S, Rittel D, Landau P, Venkert A (2012) Microstructural effects on adiabatic shear band formation. Scr Mater 66:9–12CrossRef
39.
Zurück zum Zitat Cerreta EK, Frank IJ, Gray GT III, Trujillo CP, Korzekwa DA, Dougherty LM (2009) The influence of microstructure on the mechanical response of copper in shear. Mater Sci Eng A 501:207–219CrossRef Cerreta EK, Frank IJ, Gray GT III, Trujillo CP, Korzekwa DA, Dougherty LM (2009) The influence of microstructure on the mechanical response of copper in shear. Mater Sci Eng A 501:207–219CrossRef
40.
Zurück zum Zitat Jiang L, Jonas JJ, Mishra RK, Luo AA, Sachdev AK, Godet S (2007) Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater 55(11):3889–3910CrossRef Jiang L, Jonas JJ, Mishra RK, Luo AA, Sachdev AK, Godet S (2007) Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater 55(11):3889–3910CrossRef
41.
Zurück zum Zitat Murr LE, Esquivel EV (2004) Observations of common microstructural issues associated with dynamic deformation phenomena: twins, microbands, grain size effects, shear bands, and dynamic recrystallization. J Mater Sci 39:1153–1168CrossRef Murr LE, Esquivel EV (2004) Observations of common microstructural issues associated with dynamic deformation phenomena: twins, microbands, grain size effects, shear bands, and dynamic recrystallization. J Mater Sci 39:1153–1168CrossRef
42.
Zurück zum Zitat Godet S, Jiang L, Luo AA, Jonas JJ (2006) Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr Mater 55:1055–1058CrossRef Godet S, Jiang L, Luo AA, Jonas JJ (2006) Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr Mater 55:1055–1058CrossRef
43.
Zurück zum Zitat Hull D, Bacon DJ (2011) Introduction to dislocations, 5th edn. Elsevier/Butterworth-Heinemann, Burlington 43 Hull D, Bacon DJ (2011) Introduction to dislocations, 5th edn. Elsevier/Butterworth-Heinemann, Burlington 43
44.
Zurück zum Zitat Vural M, Rittel D, Ravichandran G (2003) Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates. Metall Mater Trans A 34A(12):2873–2885CrossRef Vural M, Rittel D, Ravichandran G (2003) Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates. Metall Mater Trans A 34A(12):2873–2885CrossRef
45.
Zurück zum Zitat Vural M, Molinari A, Bhattacharyya N (2011) Analysis of slot orientation in shear-compression specimen (SCS). Exp Mech 51:263–273CrossRef Vural M, Molinari A, Bhattacharyya N (2011) Analysis of slot orientation in shear-compression specimen (SCS). Exp Mech 51:263–273CrossRef
46.
Zurück zum Zitat Gray III GT (2000) Classic split-Hopkinson pressure bar testing. In: Kuhn H, Medlin D (eds) ASM handbook, vol. 8, pp 462–476, ASM International, Metals Park Gray III GT (2000) Classic split-Hopkinson pressure bar testing. In: Kuhn H, Medlin D (eds) ASM handbook, vol. 8, pp 462–476, ASM International, Metals Park
47.
Zurück zum Zitat Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2):113–123CrossRef Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000) Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2):113–123CrossRef
48.
Zurück zum Zitat Xiao-peng L, Hui-zhong L, Lan H, Tao H, Bing M, Yong L (2012) Microstructural evolution of 2519-T87 aluminum alloy obliquely impacted by projectile with velocity of 816 m/s. Trans Nonferr Met Soc China 22:1270–1279CrossRef Xiao-peng L, Hui-zhong L, Lan H, Tao H, Bing M, Yong L (2012) Microstructural evolution of 2519-T87 aluminum alloy obliquely impacted by projectile with velocity of 816 m/s. Trans Nonferr Met Soc China 22:1270–1279CrossRef
49.
Zurück zum Zitat Kaibyshev R, Musin F, Avtokratova E, Motohashi Y (2005) Deformation behavior of a modified 5083 aluminum alloy. Mater Sci Eng A 392:373–379CrossRef Kaibyshev R, Musin F, Avtokratova E, Motohashi Y (2005) Deformation behavior of a modified 5083 aluminum alloy. Mater Sci Eng A 392:373–379CrossRef
50.
Zurück zum Zitat Jia N, Roters F, Eisenlohr P, Kords C, Raabe D (2012) Non-crystallographic shear banding in crystal plasticity FEM simulations: example of texture evolution in a-brass. Acta Mater 60:1099–1115CrossRef Jia N, Roters F, Eisenlohr P, Kords C, Raabe D (2012) Non-crystallographic shear banding in crystal plasticity FEM simulations: example of texture evolution in a-brass. Acta Mater 60:1099–1115CrossRef
51.
Zurück zum Zitat Jia N, Roters F, Eisenlohr P, Raabe D, Zhao X (2013) Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu–Ag and Cu–Nb metal matrix composites. Acta Mater 61:4591–4606CrossRef Jia N, Roters F, Eisenlohr P, Raabe D, Zhao X (2013) Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu–Ag and Cu–Nb metal matrix composites. Acta Mater 61:4591–4606CrossRef
52.
Zurück zum Zitat Jia N, Raabe D, Zhao X (2014) Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu–Ag metal matrix composite. Acta Mater 76:238–251CrossRef Jia N, Raabe D, Zhao X (2014) Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu–Ag metal matrix composite. Acta Mater 76:238–251CrossRef
53.
Zurück zum Zitat Ahn B, Lavernia EJ, Nutt SR (2008) Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure. J Mater Sci 43:7403–7408CrossRef Ahn B, Lavernia EJ, Nutt SR (2008) Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure. J Mater Sci 43:7403–7408CrossRef
Metadaten
Titel
EBSD characterization of shear band formation in aluminum armor alloys
verfasst von
T. Kozmel
M. Vural
S. Tin
Publikationsdatum
18.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0035-0

Weitere Artikel der Ausgabe 16/2016

Journal of Materials Science 16/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.