Skip to main content
Erschienen in: Journal of Materials Science 15/2017

27.03.2017 | In Honor of Larry Hench

Reactive molecular dynamics: an effective tool for modelling the sol–gel synthesis of bioglasses

verfasst von: Alexander S. Côté, Alastair N. Cormack, Antonio Tilocca

Erschienen in: Journal of Materials Science | Ausgabe 15/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unlike melt-derived bioactive glasses, obtaining realistic models of sol–gel glasses represents a significant challenge for current simulation methods, due to the need to accurately reproduce the dynamical evolution in an aqueous solution starting from the precursors. Here we discuss the advantages of using reactive molecular dynamics in this context, by reviewing recent studies where the approach has been applied to examine the initial transformation of realistic precursor solutions. Moreover, we discuss additional results illustrating the gradual formation of clusters and rings in the presence of calcium, which corroborate our recent analysis and further highlight the importance of reactive molecular dynamics for guiding future computational studies of sol–gel biomedical glasses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9:4457–4486CrossRef Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9:4457–4486CrossRef
3.
Zurück zum Zitat Yu BB, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME et al (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476CrossRef Yu BB, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME et al (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476CrossRef
4.
Zurück zum Zitat Yeon J, van Duin AC (2015) ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy. J Phys Chem C 120:305–317CrossRef Yeon J, van Duin AC (2015) ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy. J Phys Chem C 120:305–317CrossRef
5.
Zurück zum Zitat Rimsza J, Deng L, Du J (2016) Molecular dynamics simulations of nanoporous organosilicate glasses using reactive force field (ReaxFF). J Non Cryst Solids 431:103–111CrossRef Rimsza J, Deng L, Du J (2016) Molecular dynamics simulations of nanoporous organosilicate glasses using reactive force field (ReaxFF). J Non Cryst Solids 431:103–111CrossRef
6.
Zurück zum Zitat Deetz JD, Faller R (2015) Reactive modeling of the initial stages of alkoxysilane polycondensation: effects of precursor molecule structure and solution composition. Soft Matter 11:6780–6789CrossRef Deetz JD, Faller R (2015) Reactive modeling of the initial stages of alkoxysilane polycondensation: effects of precursor molecule structure and solution composition. Soft Matter 11:6780–6789CrossRef
7.
Zurück zum Zitat Chenoweth K, Cheung S, Van Duin AC, Goddard WA, Kober EM (2005) Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc 127:7192–7202CrossRef Chenoweth K, Cheung S, Van Duin AC, Goddard WA, Kober EM (2005) Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc 127:7192–7202CrossRef
8.
Zurück zum Zitat Moqadam M, Riccardi E, Trinh TT, Åstrand P-O, van Erp TS (2015) A test on reactive force fields for the study of silica dimerization reactions. J Chem Phys 143:184113CrossRef Moqadam M, Riccardi E, Trinh TT, Åstrand P-O, van Erp TS (2015) A test on reactive force fields for the study of silica dimerization reactions. J Chem Phys 143:184113CrossRef
9.
Zurück zum Zitat Malani A, Auerbach SM, Monson PA (2011) Monte Carlo simulations of silica polymerization and network formation. J Phys Chem C 115:15988–16000CrossRef Malani A, Auerbach SM, Monson PA (2011) Monte Carlo simulations of silica polymerization and network formation. J Phys Chem C 115:15988–16000CrossRef
10.
Zurück zum Zitat Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98:1311–1316CrossRef Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98:1311–1316CrossRef
11.
Zurück zum Zitat Rao NZ, Gelb LD (2004) Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B 108:12418–12428CrossRef Rao NZ, Gelb LD (2004) Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B 108:12418–12428CrossRef
12.
Zurück zum Zitat Bhattacharya S, Kieffer J (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112:1764–1771CrossRef Bhattacharya S, Kieffer J (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112:1764–1771CrossRef
13.
Zurück zum Zitat Valliant EM, Turdean-Ionescu CA, Hanna JV, Smith ME, Jones JR (2012) Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. J Mater Chem 22:1613–1619CrossRef Valliant EM, Turdean-Ionescu CA, Hanna JV, Smith ME, Jones JR (2012) Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. J Mater Chem 22:1613–1619CrossRef
14.
Zurück zum Zitat Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME et al (2012) Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Phil Trans R Soc A 370:1422–1443CrossRef Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME et al (2012) Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Phil Trans R Soc A 370:1422–1443CrossRef
15.
Zurück zum Zitat Trinh TT, Jansen AP, van Santen RA, Meijer EJ (2009) Role of water in silica oligomerization. J Phys Chem C 113:2647–2652CrossRef Trinh TT, Jansen AP, van Santen RA, Meijer EJ (2009) Role of water in silica oligomerization. J Phys Chem C 113:2647–2652CrossRef
16.
Zurück zum Zitat Tilocca A (2014) Current challenges in atomistic simulations of glasses for biomedical applications. Phys Chem Chem Phys 16:3874–3880CrossRef Tilocca A (2014) Current challenges in atomistic simulations of glasses for biomedical applications. Phys Chem Chem Phys 16:3874–3880CrossRef
17.
Zurück zum Zitat Yu Y, Wang B, Wang M, Sant G, Bauchy M (2016) Revisiting silica with ReaxFF: towards improved predictions of glass structure and properties via reactive molecular dynamics. J Non Cryst Solids 443:148–154CrossRef Yu Y, Wang B, Wang M, Sant G, Bauchy M (2016) Revisiting silica with ReaxFF: towards improved predictions of glass structure and properties via reactive molecular dynamics. J Non Cryst Solids 443:148–154CrossRef
18.
Zurück zum Zitat Mahadevan TS, Garofalini SH (2008) Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions. J Phys Chem C 112:1507–1515CrossRef Mahadevan TS, Garofalini SH (2008) Dissociative chemisorption of water onto silica surfaces and formation of hydronium ions. J Phys Chem C 112:1507–1515CrossRef
19.
Zurück zum Zitat Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458CrossRef Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458CrossRef
20.
Zurück zum Zitat Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486CrossRef Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486CrossRef
21.
Zurück zum Zitat Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409CrossRef Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409CrossRef
22.
Zurück zum Zitat Tilocca A, Cormack AN (2011) The initial stages of bioglass dissolution: a Car–Parrinello molecular-dynamics study of the glass–water interface. Proc R Soc A 467:2102–2111CrossRef Tilocca A, Cormack AN (2011) The initial stages of bioglass dissolution: a Car–Parrinello molecular-dynamics study of the glass–water interface. Proc R Soc A 467:2102–2111CrossRef
23.
Zurück zum Zitat Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRef Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRef
24.
Zurück zum Zitat Christie JK, Pedone A, Menziani MC, Tilocca A (2011) Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J Phys Chem B 115:2038–2045CrossRef Christie JK, Pedone A, Menziani MC, Tilocca A (2011) Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J Phys Chem B 115:2038–2045CrossRef
25.
Zurück zum Zitat Tilocca A (2007) Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations. Phys Rev B 76:224202CrossRef Tilocca A (2007) Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations. Phys Rev B 76:224202CrossRef
26.
Zurück zum Zitat Tilocca A (2010) Models of structure, dynamics and reactivity of bioglasses: a review. J Mater Chem 20:6848CrossRef Tilocca A (2010) Models of structure, dynamics and reactivity of bioglasses: a review. J Mater Chem 20:6848CrossRef
27.
Zurück zum Zitat Tilocca A (2008) Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J Chem Phys 129:084504CrossRef Tilocca A (2008) Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J Chem Phys 129:084504CrossRef
28.
Zurück zum Zitat Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363CrossRef Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363CrossRef
29.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRef
30.
Zurück zum Zitat Van Duin AC, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811CrossRef Van Duin AC, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811CrossRef
31.
Zurück zum Zitat Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK et al (2016) The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2:15011CrossRef Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK et al (2016) The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2:15011CrossRef
32.
Zurück zum Zitat van Duin AC, Baas JM, van de Graaf B (1994) Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation. J Chem Soc Faraday Trans 90:2881–2895CrossRef van Duin AC, Baas JM, van de Graaf B (1994) Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation. J Chem Soc Faraday Trans 90:2881–2895CrossRef
33.
Zurück zum Zitat Iype E, Hütter M, Jansen A, Nedea SV, Rindt C (2013) Parameterization of a reactive force field using a Monte Carlo algorithm. J Comput Chem 34:1143–1154CrossRef Iype E, Hütter M, Jansen A, Nedea SV, Rindt C (2013) Parameterization of a reactive force field using a Monte Carlo algorithm. J Comput Chem 34:1143–1154CrossRef
34.
Zurück zum Zitat Jaramillo-Botero A, Naserifar S, Goddard WA III (2014) General multiobjective force field optimization framework, with application to reactive force fields for silicon carbide. J Chem Theory Comput 10:1426–1439CrossRef Jaramillo-Botero A, Naserifar S, Goddard WA III (2014) General multiobjective force field optimization framework, with application to reactive force fields for silicon carbide. J Chem Theory Comput 10:1426–1439CrossRef
35.
Zurück zum Zitat Jones JR (2012) Sol–gel derived glasses for medicine. In: Jones J, Clare A (eds) Bio-glasses. Wiley, New York, pp 29–44CrossRef Jones JR (2012) Sol–gel derived glasses for medicine. In: Jones J, Clare A (eds) Bio-glasses. Wiley, New York, pp 29–44CrossRef
36.
Zurück zum Zitat Chowdhury SC, Haque BZG, Gillespie JW (2016) Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF. J Mater Sci 51:10139–10159. doi:10.1007/s10853-016-0242-8 CrossRef Chowdhury SC, Haque BZG, Gillespie JW (2016) Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF. J Mater Sci 51:10139–10159. doi:10.​1007/​s10853-016-0242-8 CrossRef
37.
Zurück zum Zitat Fogarty JC, Aktulga HM, Grama AY, Van Duin AC, Pandit SA (2010) A reactive molecular dynamics simulation of the silica–water interface. J Chem Phys 132:174704CrossRef Fogarty JC, Aktulga HM, Grama AY, Van Duin AC, Pandit SA (2010) A reactive molecular dynamics simulation of the silica–water interface. J Chem Phys 132:174704CrossRef
38.
Zurück zum Zitat Larsson HR, Duin AC, Hartke B (2013) Global optimization of parameters in the reactive force field ReaxFF for SiOH. J Comput Chem 34:2178–2189CrossRef Larsson HR, Duin AC, Hartke B (2013) Global optimization of parameters in the reactive force field ReaxFF for SiOH. J Comput Chem 34:2178–2189CrossRef
39.
Zurück zum Zitat Pitman MC, Van Duin AC (2012) Dynamics of confined reactive water in smectite clay–zeolite composites. J Am Chem Soc 134:3042–3053CrossRef Pitman MC, Van Duin AC (2012) Dynamics of confined reactive water in smectite clay–zeolite composites. J Am Chem Soc 134:3042–3053CrossRef
40.
Zurück zum Zitat Deetz JD, Faller R (2014) Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. J Phys Chem B 118:10966–10978CrossRef Deetz JD, Faller R (2014) Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. J Phys Chem B 118:10966–10978CrossRef
41.
Zurück zum Zitat Soper A (2007) Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys Condens Matter 19:335206CrossRef Soper A (2007) Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water. J Phys Condens Matter 19:335206CrossRef
42.
Zurück zum Zitat Côté AS, Cormack AN, Tilocca A (2016) Influence of calcium on the initial stages of the sol–gel synthesis of bioactive glasses. J Phys Chem B 120:11773–11780CrossRef Côté AS, Cormack AN, Tilocca A (2016) Influence of calcium on the initial stages of the sol–gel synthesis of bioactive glasses. J Phys Chem B 120:11773–11780CrossRef
43.
Zurück zum Zitat Cowen BJ, El-Genk MS (2016) Bond-order reactive force fields for molecular dynamics simulations of crystalline silica. Comput Mater Sci 111:269–276CrossRef Cowen BJ, El-Genk MS (2016) Bond-order reactive force fields for molecular dynamics simulations of crystalline silica. Comput Mater Sci 111:269–276CrossRef
44.
Zurück zum Zitat Le Roux S, Jund P (2010) Ring statistics analysis of topological networks: new approach and application to amorphous GeS2 and SiO2 systems. Comput Mater Sci 49:70–83CrossRef Le Roux S, Jund P (2010) Ring statistics analysis of topological networks: new approach and application to amorphous GeS2 and SiO2 systems. Comput Mater Sci 49:70–83CrossRef
45.
Zurück zum Zitat Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282CrossRef Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282CrossRef
Metadaten
Titel
Reactive molecular dynamics: an effective tool for modelling the sol–gel synthesis of bioglasses
verfasst von
Alexander S. Côté
Alastair N. Cormack
Antonio Tilocca
Publikationsdatum
27.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1009-6

Weitere Artikel der Ausgabe 15/2017

Journal of Materials Science 15/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.