Skip to main content
Erschienen in: Journal of Materials Science 6/2019

03.12.2018 | Chemical routes to materials

β-Mo2C/N, P-co-doped carbon as highly efficient catalyst for hydrogen evolution reaction

verfasst von: Jiabin Tan, Xiaobo He, Fengxiang Yin, Xin Liang, Biaohua Chen, Guoru Li, Huaqiang Yin

Erschienen in: Journal of Materials Science | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a β-Mo2C/N, P-co-doped carbon (NPC) catalyst with a porous structure of β-Mo2C nanoparticles loading on NPC matrix was prepared by vacuum-rotary evaporation and followed by a facile pyrolysis process for hydrogen evolution reaction (HER). The porous structure is beneficial for exposing more active sites and the mass transfer during the HER. In addition, the carbon matrixes with the highly doped N and P heteroatoms also provide their positive contributions to its high catalytic activity for HER. Owing to the advantages mentioned above, the optimized catalyst shows a small overpotential of 181 mV for driving a cathodic current density of 10 mA cm−2, a low Tafel slope of 65.3 mV dec−1 and a high exchange current density of 1.5 × 10−2 mA cm−2 during HER processes in acid electrolyte. The excellent performance of the β-Mo2C/NPC makes it a great potential candidate as the HER electrocatalyst.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRef Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRef
2.
Zurück zum Zitat Portney PR (2003) Energy resources and global development. Science 302:1528–1531CrossRef Portney PR (2003) Energy resources and global development. Science 302:1528–1531CrossRef
3.
Zurück zum Zitat Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef
4.
Zurück zum Zitat Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRef Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRef
5.
Zurück zum Zitat Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502CrossRef Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502CrossRef
6.
Zurück zum Zitat Marc Koper TM (2013) Hydrogen electrocatalysis: a basic solution. Nat Chem 5:255–256CrossRef Marc Koper TM (2013) Hydrogen electrocatalysis: a basic solution. Nat Chem 5:255–256CrossRef
7.
Zurück zum Zitat Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260CrossRef Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260CrossRef
8.
Zurück zum Zitat Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:3783–3790CrossRef Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:3783–3790CrossRef
9.
Zurück zum Zitat Hou J, Lei Y, Wang F, Ma X, Min S (2017) In-situ photochemical fabrication of transition metal-promoted amorphous molybdenum sulfide catalysts for enhanced photosensitized hydrogen evolution. Int J Hydrogen Energy 42:11118–11129CrossRef Hou J, Lei Y, Wang F, Ma X, Min S (2017) In-situ photochemical fabrication of transition metal-promoted amorphous molybdenum sulfide catalysts for enhanced photosensitized hydrogen evolution. Int J Hydrogen Energy 42:11118–11129CrossRef
10.
Zurück zum Zitat Peters AW, Li Z, Farha OK, Hupp JT (2016) Toward inexpensive photocatalytic hydrogen evolution: a nickel sulfide catalyst supported on a high-stability metal-organic framework. ACS Appl Mater Interfaces 8:20675CrossRef Peters AW, Li Z, Farha OK, Hupp JT (2016) Toward inexpensive photocatalytic hydrogen evolution: a nickel sulfide catalyst supported on a high-stability metal-organic framework. ACS Appl Mater Interfaces 8:20675CrossRef
11.
Zurück zum Zitat Tuomi S, Guil-Lopez R, Kallio T (2016) Molybdenum carbide nanoparticles as a catalyst for the hydrogen evolution reaction and the effect of ph. J Catal 334:102–109CrossRef Tuomi S, Guil-Lopez R, Kallio T (2016) Molybdenum carbide nanoparticles as a catalyst for the hydrogen evolution reaction and the effect of ph. J Catal 334:102–109CrossRef
12.
Zurück zum Zitat Bukola S, Merzougui B, Akinpelu A, Zeama M (2016) Cobalt and nitrogen co-doped tungsten carbide catalyst for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 190:1113–1123CrossRef Bukola S, Merzougui B, Akinpelu A, Zeama M (2016) Cobalt and nitrogen co-doped tungsten carbide catalyst for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 190:1113–1123CrossRef
13.
Zurück zum Zitat Ma Y, He Z, Wu Z, Zhang B, Zhang Y, Ding S (2017) Galvanic-replacement mediated synthesis of copper–nickel nitrides as electrocatalyst for hydrogen evolution reaction. J Mater Chem A 5:24850–24858CrossRef Ma Y, He Z, Wu Z, Zhang B, Zhang Y, Ding S (2017) Galvanic-replacement mediated synthesis of copper–nickel nitrides as electrocatalyst for hydrogen evolution reaction. J Mater Chem A 5:24850–24858CrossRef
14.
Zurück zum Zitat Abghoui Y, Skúlason E (2017) Hydrogen evolution reaction catalyzed by transition-metal nitrides. J Phys Chem C 121:24036–24045CrossRef Abghoui Y, Skúlason E (2017) Hydrogen evolution reaction catalyzed by transition-metal nitrides. J Phys Chem C 121:24036–24045CrossRef
15.
Zurück zum Zitat Zhou Z, Wei L, Wang Y, Karahan HE, Chen Z, Lei Y (2017) Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte ph. J Mater Chem A 5:20390–20397CrossRef Zhou Z, Wei L, Wang Y, Karahan HE, Chen Z, Lei Y (2017) Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte ph. J Mater Chem A 5:20390–20397CrossRef
17.
Zurück zum Zitat Straistari T, Fize J, Shova SS, Reglier M, Artero V, Orio M (2016) A thiosemicarbazone-nickel(ii) complex as efficient electrocatalyst for hydrogen evolution. Chemcatchem 9:2262–2268CrossRef Straistari T, Fize J, Shova SS, Reglier M, Artero V, Orio M (2016) A thiosemicarbazone-nickel(ii) complex as efficient electrocatalyst for hydrogen evolution. Chemcatchem 9:2262–2268CrossRef
18.
Zurück zum Zitat Huang Y, Zhang B (2017) Active co-catalysts for photocatalytic hydrogen evolution derived from nickel or cobalt amine complexes. Angew Chem Int Ed 56:14804–14806CrossRef Huang Y, Zhang B (2017) Active co-catalysts for photocatalytic hydrogen evolution derived from nickel or cobalt amine complexes. Angew Chem Int Ed 56:14804–14806CrossRef
19.
Zurück zum Zitat Regmi YN, Wam C, Duffee KD, Leonard BM (2015) Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst. ChemCatChem 7:3911–3915CrossRef Regmi YN, Wam C, Duffee KD, Leonard BM (2015) Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst. ChemCatChem 7:3911–3915CrossRef
20.
Zurück zum Zitat Zhu J, Yao Y, Chen Z, Zhang A, Zhou M, Guo J, Wu WD, Chen XD, Li Y, Wu Z (2018) Controllable synthesis of ordered mesoporous Mo2C@graphitic carbon core-shell nanowire arrays for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 10:18761–18770CrossRef Zhu J, Yao Y, Chen Z, Zhang A, Zhou M, Guo J, Wu WD, Chen XD, Li Y, Wu Z (2018) Controllable synthesis of ordered mesoporous Mo2C@graphitic carbon core-shell nanowire arrays for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 10:18761–18770CrossRef
21.
Zurück zum Zitat Guo J, Wang J, Xu C, Wu Z, Lei W, Zhu J, Xiao W, Wang D (2017) Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. J Electroanal Chem 801:7–13CrossRef Guo J, Wang J, Xu C, Wu Z, Lei W, Zhu J, Xiao W, Wang D (2017) Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. J Electroanal Chem 801:7–13CrossRef
22.
Zurück zum Zitat Pu Z, Wang M, Kou Z, Amiinu IS, Mu S (2016) Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chem Commun 52:12753–12756CrossRef Pu Z, Wang M, Kou Z, Amiinu IS, Mu S (2016) Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chem Commun 52:12753–12756CrossRef
23.
Zurück zum Zitat Mir RA, Pandety OP (2018) Influence of graphitic/amorphous coated carbon on HER activity of low temperature synthesized β-Mo2C@C nanocomposites. Chem Eng J 348:1037–1048CrossRef Mir RA, Pandety OP (2018) Influence of graphitic/amorphous coated carbon on HER activity of low temperature synthesized β-Mo2C@C nanocomposites. Chem Eng J 348:1037–1048CrossRef
24.
Zurück zum Zitat Long G, Wan K, Liu M, Liang Z, Piao J, Tsiakaras P (2017) Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. J Catal 348:151–159CrossRef Long G, Wan K, Liu M, Liang Z, Piao J, Tsiakaras P (2017) Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. J Catal 348:151–159CrossRef
25.
Zurück zum Zitat Lin Y, Zhang J, Pan Y, Liu Y (2017) Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Appl Surf Sci 422:828–837CrossRef Lin Y, Zhang J, Pan Y, Liu Y (2017) Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Appl Surf Sci 422:828–837CrossRef
26.
Zurück zum Zitat Kong X, Chen S, Zou Y, Lyu S, She X, Lu Y, Sun J, Zhang H, Yang D (2018) Cellulose nanocrystals (CNC) derived Mo2C@sulfur-doped carbon aerogels for hydrogen evolution. Int J Hydrogen Energy 43:13720–13726CrossRef Kong X, Chen S, Zou Y, Lyu S, She X, Lu Y, Sun J, Zhang H, Yang D (2018) Cellulose nanocrystals (CNC) derived Mo2C@sulfur-doped carbon aerogels for hydrogen evolution. Int J Hydrogen Energy 43:13720–13726CrossRef
27.
Zurück zum Zitat Jiao Y, Zheng Y, Davey K, Qiao SZ (2016) Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy 1:16130CrossRef Jiao Y, Zheng Y, Davey K, Qiao SZ (2016) Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy 1:16130CrossRef
28.
Zurück zum Zitat Qu KG, Zheng Y, Jiao Y, Zhang XX, Dai S, Qiao SZ (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7:1602068CrossRef Qu KG, Zheng Y, Jiao Y, Zhang XX, Dai S, Qiao SZ (2017) Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater 7:1602068CrossRef
29.
Zurück zum Zitat Qu KG, Zheng Y, Zhang XX, Davey K, Dai S, Qiao SZ (2017) Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 11:7293–7900CrossRef Qu KG, Zheng Y, Zhang XX, Davey K, Dai S, Qiao SZ (2017) Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 11:7293–7900CrossRef
30.
Zurück zum Zitat Wan C, Regmi YN, Leonard BM (2014) Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 53:6407–6410CrossRef Wan C, Regmi YN, Leonard BM (2014) Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 53:6407–6410CrossRef
31.
Zurück zum Zitat Mir RA, Sharma P, Pandey OP (2017) Thermal and structural studies of carbon coated Mo2C synthesized via in situ single step reduction carburization. Sci Rep 7:3518–3529CrossRef Mir RA, Sharma P, Pandey OP (2017) Thermal and structural studies of carbon coated Mo2C synthesized via in situ single step reduction carburization. Sci Rep 7:3518–3529CrossRef
32.
Zurück zum Zitat Teghil R, De Bonis A, Galasso A, Sansone M, Rau JV, Santagata A (2012) Nanostructured molybdenum carbide thin films obtained by femtosecond pulsed laser deposition. Phys Status Solidi C 9:2370–2373CrossRef Teghil R, De Bonis A, Galasso A, Sansone M, Rau JV, Santagata A (2012) Nanostructured molybdenum carbide thin films obtained by femtosecond pulsed laser deposition. Phys Status Solidi C 9:2370–2373CrossRef
33.
Zurück zum Zitat Shen Y, Gong B (2015) Coupling Mo2C nanoparticles with graphite nanosheets as durable electrocatalysts for hydrogen evolution reaction. Angew Chem Int Ed 54:1–6CrossRef Shen Y, Gong B (2015) Coupling Mo2C nanoparticles with graphite nanosheets as durable electrocatalysts for hydrogen evolution reaction. Angew Chem Int Ed 54:1–6CrossRef
34.
Zurück zum Zitat Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y (2016) Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10:11337–11343CrossRef Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y (2016) Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10:11337–11343CrossRef
35.
Zurück zum Zitat Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47:1822–1873CrossRef Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47:1822–1873CrossRef
36.
Zurück zum Zitat Calizo I, Bejenari I, Rahman M, Liu G, Balandin AA (2009) Ultraviolet Raman microscopy of single and multiplayer graphene. J Appl Phys 106:043509CrossRef Calizo I, Bejenari I, Rahman M, Liu G, Balandin AA (2009) Ultraviolet Raman microscopy of single and multiplayer graphene. J Appl Phys 106:043509CrossRef
37.
Zurück zum Zitat Jing S, Zhang L, Luo L, Lu J, Yin S, Shen PK, Panagiotis T (2018) N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl Catal B 224:553–5450CrossRef Jing S, Zhang L, Luo L, Lu J, Yin S, Shen PK, Panagiotis T (2018) N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl Catal B 224:553–5450CrossRef
38.
Zurück zum Zitat Dong J, Wu Q, Huang C, Yao W, Xu Q (2018) Cost effective Mo rich Mo2C electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 6:10028–10035CrossRef Dong J, Wu Q, Huang C, Yao W, Xu Q (2018) Cost effective Mo rich Mo2C electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 6:10028–10035CrossRef
39.
Zurück zum Zitat Mao Y, Li W, Sun X, Ma Y, Xia J, Zhao Y, Lu X, Gan J, Liu Z, Chen J, Liu P, Tong Y (2011) Room-temperature ferromagnetism in hierarchically branched MoO3 nanostructures. CrystEngComm 14:1419–1424CrossRef Mao Y, Li W, Sun X, Ma Y, Xia J, Zhao Y, Lu X, Gan J, Liu Z, Chen J, Liu P, Tong Y (2011) Room-temperature ferromagnetism in hierarchically branched MoO3 nanostructures. CrystEngComm 14:1419–1424CrossRef
40.
Zurück zum Zitat Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Jin JS (2016) Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10:8851–8860CrossRef Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Jin JS (2016) Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10:8851–8860CrossRef
41.
Zurück zum Zitat Huang Y, Ge J, Hu J, Zhang J, Hao J, Wei Y (2017) Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv Energy Mater 8:1701601CrossRef Huang Y, Ge J, Hu J, Zhang J, Hao J, Wei Y (2017) Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv Energy Mater 8:1701601CrossRef
42.
Zurück zum Zitat Zhang S, Xiao X, Lv T, Lv X, Liu B, Wei W, Liu J (2018) Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst. Appl Surf Sci 446:10–17CrossRef Zhang S, Xiao X, Lv T, Lv X, Liu B, Wei W, Liu J (2018) Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst. Appl Surf Sci 446:10–17CrossRef
43.
Zurück zum Zitat Ji J, Wang J, Teng X, Dong H, He X, Chen Z (2018) N, P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl Mater Interfaces 10:14632–14640CrossRef Ji J, Wang J, Teng X, Dong H, He X, Chen Z (2018) N, P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl Mater Interfaces 10:14632–14640CrossRef
44.
Zurück zum Zitat Wang J, Lu H, Hong Q, Cao Y, Li X, Bai J (2017) Porous N,S-codoped carbon architectures with bimetallic sulphide nanoparticles encapsulated in graphitic layers: highly active and robust electrocatalysts for the oxygen reduction reaction in Al-air batteries. Chem Eng J 330:1342–1350CrossRef Wang J, Lu H, Hong Q, Cao Y, Li X, Bai J (2017) Porous N,S-codoped carbon architectures with bimetallic sulphide nanoparticles encapsulated in graphitic layers: highly active and robust electrocatalysts for the oxygen reduction reaction in Al-air batteries. Chem Eng J 330:1342–1350CrossRef
45.
Zurück zum Zitat Ann SH, Yu X, Manthiram A (2017) “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv Mater 29:1606534CrossRef Ann SH, Yu X, Manthiram A (2017) “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv Mater 29:1606534CrossRef
46.
Zurück zum Zitat Ojha K, Saha S, Kolev H, Kumar B, Ganguli AK (2016) Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 193:268–274CrossRef Ojha K, Saha S, Kolev H, Kumar B, Ganguli AK (2016) Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta 193:268–274CrossRef
47.
Zurück zum Zitat García G, Roca-Ayats M, Guillén-Villafuerte O, Rodríguez JL, Arévalo MC, Pastor E (2017) Electrochemical performance of α-Mo2C as catalyst for the hydrogen evolution reaction. J Electroanal Chem 793:235–241CrossRef García G, Roca-Ayats M, Guillén-Villafuerte O, Rodríguez JL, Arévalo MC, Pastor E (2017) Electrochemical performance of α-Mo2C as catalyst for the hydrogen evolution reaction. J Electroanal Chem 793:235–241CrossRef
48.
Zurück zum Zitat Zhou G, Yang Q, Guo X, Chen Y, Yang Q, Xu L, Sun D, Tang Y (2018) Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 43:9326–9333CrossRef Zhou G, Yang Q, Guo X, Chen Y, Yang Q, Xu L, Sun D, Tang Y (2018) Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 43:9326–9333CrossRef
49.
Zurück zum Zitat Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRef
50.
Zurück zum Zitat Li Z, Ma J, Zhou Y, Yin Z, Tang Y, Ma Y, Wang D (2018) Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochim Acta 283:306–312CrossRef Li Z, Ma J, Zhou Y, Yin Z, Tang Y, Ma Y, Wang D (2018) Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochim Acta 283:306–312CrossRef
51.
Zurück zum Zitat Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Asefa T, Chen W, Zou X (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed 54:10752–10757CrossRef Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Asefa T, Chen W, Zou X (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed 54:10752–10757CrossRef
52.
Zurück zum Zitat Wu Z, Wang J, Zhu J, Guo J, Xiao W, Xuan C, Lei W, Wang D (2017) Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. Electrochim Acta 232:254–261CrossRef Wu Z, Wang J, Zhu J, Guo J, Xiao W, Xuan C, Lei W, Wang D (2017) Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. Electrochim Acta 232:254–261CrossRef
53.
Zurück zum Zitat Zhang Y, Wang Y, Jia S, Xu H, Zang J, Lu J, Xu X (2016) A hybrid of NiMo-Mo2C/C as non-noble metal electrocatalyst for hydrogen evolution reaction in an acidic solution. Electrochim Acta 222:747–754CrossRef Zhang Y, Wang Y, Jia S, Xu H, Zang J, Lu J, Xu X (2016) A hybrid of NiMo-Mo2C/C as non-noble metal electrocatalyst for hydrogen evolution reaction in an acidic solution. Electrochim Acta 222:747–754CrossRef
54.
Zurück zum Zitat McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357CrossRef McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357CrossRef
55.
Zurück zum Zitat Hu H, Tian M, Li F, Gao L, Xu N, Hu Y, Long X, Ma J, Jin J (2018) Phosphorus dual-doped moo2 nanosheets/multiwalled carbon nanotube hybrid as efficient electrocatalyst for hydrogen evolution. ChemElectroChem 5:2660–2665CrossRef Hu H, Tian M, Li F, Gao L, Xu N, Hu Y, Long X, Ma J, Jin J (2018) Phosphorus dual-doped moo2 nanosheets/multiwalled carbon nanotube hybrid as efficient electrocatalyst for hydrogen evolution. ChemElectroChem 5:2660–2665CrossRef
56.
Zurück zum Zitat Huo L, Liu B, Zhang G, Zhang J (2016) Universal strategy to fabricate a two-dimensional layered mesoporous Mo2C electrocatalyst hybridized on graphene sheets with high activity and durability for hydrogen generation. ACS Appl Mater Interfaces 8:18107–18118CrossRef Huo L, Liu B, Zhang G, Zhang J (2016) Universal strategy to fabricate a two-dimensional layered mesoporous Mo2C electrocatalyst hybridized on graphene sheets with high activity and durability for hydrogen generation. ACS Appl Mater Interfaces 8:18107–18118CrossRef
57.
Zurück zum Zitat Ma Y, Guan G, Hao X, Gao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen production—a review. Renew Sustain Energy Rev 75:1101–1129CrossRef Ma Y, Guan G, Hao X, Gao J, Abudula A (2017) Molybdenum carbide as alternative catalyst for hydrogen production—a review. Renew Sustain Energy Rev 75:1101–1129CrossRef
58.
Zurück zum Zitat Liu Y, Huang B, Xie Z (2018) Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 427:693–701CrossRef Liu Y, Huang B, Xie Z (2018) Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 427:693–701CrossRef
59.
Zurück zum Zitat Lv CC, Huang ZP, Yang QP, Zhang C (2018) Nanocomposite of MoO2 and MoC loaded on porous carbon as an efficient electrocatalyst for hydrogen evolution reaction. Inorg Chem Front 5:446–453CrossRef Lv CC, Huang ZP, Yang QP, Zhang C (2018) Nanocomposite of MoO2 and MoC loaded on porous carbon as an efficient electrocatalyst for hydrogen evolution reaction. Inorg Chem Front 5:446–453CrossRef
60.
Zurück zum Zitat Jian C, Cai Q, Hong W, Li J, Liu W (2018) Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Small 14:1703798CrossRef Jian C, Cai Q, Hong W, Li J, Liu W (2018) Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Small 14:1703798CrossRef
61.
Zurück zum Zitat Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204CrossRef Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204CrossRef
62.
Zurück zum Zitat Yan D, Dou S, Tao L, Liu Z, Liu Z, Huo J, Wang S (2016) Electropolymerized supermolecule derived N,P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 4:13726–13730CrossRef Yan D, Dou S, Tao L, Liu Z, Liu Z, Huo J, Wang S (2016) Electropolymerized supermolecule derived N,P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 4:13726–13730CrossRef
63.
Zurück zum Zitat Lin Y, Pan Y, Zhang J (2017) CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochim Acta 232:561–569CrossRef Lin Y, Pan Y, Zhang J (2017) CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochim Acta 232:561–569CrossRef
65.
Zurück zum Zitat Chen J, Wei HM, Chen HJ, Yao WH, Lin HL, Han S (2018) N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim Acta 271:49–57CrossRef Chen J, Wei HM, Chen HJ, Yao WH, Lin HL, Han S (2018) N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim Acta 271:49–57CrossRef
66.
Zurück zum Zitat Zhuang M, Ou X, Dou Y, Zhang L, Zhang Q, Wu R, Ding Y, Shao M, Luo Z (2016) Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation. Nano Lett 16:4691–4698CrossRef Zhuang M, Ou X, Dou Y, Zhang L, Zhang Q, Wu R, Ding Y, Shao M, Luo Z (2016) Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation. Nano Lett 16:4691–4698CrossRef
Metadaten
Titel
β-Mo2C/N, P-co-doped carbon as highly efficient catalyst for hydrogen evolution reaction
verfasst von
Jiabin Tan
Xiaobo He
Fengxiang Yin
Xin Liang
Biaohua Chen
Guoru Li
Huaqiang Yin
Publikationsdatum
03.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 6/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03190-0

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Science 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.