Skip to main content
Erschienen in: Journal of Materials Science 17/2018

05.06.2018 | Metals

Grain and texture evolution in nano/ultrafine-grained bimetallic Al/Ni composite during accumulative roll bonding

verfasst von: Monireh Azimi, Mohammad Reza Toroghinejad, Morteza Shamanian, Leo A. I. Kestens

Erschienen in: Journal of Materials Science | Ausgabe 17/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evolution of grain structure during plastic deformation has a significant effect on texture variations and, in turn, the material properties. However, the metal physics leading to a stationary grain size regime in rolled Al combined with a harder phase remains poorly understood. Therefore, the grain and texture evolution in the Al phase and the possible grain coarsening mechanisms operating during accumulative roll bonding (ARB) were investigated in this work. Three ARB cycles were performed at room temperature with the aim of obtaining a bimetallic Al–Ni composite. The microstructure and texture evolutions in this composite were characterized via field emission gun scanning electron microscopy combined with electron backscatter diffraction. With increasing strain, the lamellar grain structure of Al developed into a semi-equiaxed grain structure. Correspondingly, the grain length and thickness decreased from 672 to 0.84 µm and 24.8 to 0.60 µm, respectively. Grain fragmentation was, however, most efficient in the initial stages of rolling, since continuous dynamic recrystallization prevented further grain refinement especially in the last cycle. Consequently, after a strain of 2.7, the refinement continued at decreasing rates, yielding a fragmentation ratio of one at a lower strain than that reported for single-phase Al composites. The mid-section layers of the Al phase were characterized by a mixture of shear and plane strain compression textures. After the third ARB cycle, the Al phase was characterized by a near random texture resulting from grain fragmentation. This fragmentation was induced by local plastic flow in the Al phase, owing to the presence of hard Ni fragments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsujii N, Rosochowski A, Yanagida A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann Manuf Technol 57:716–735CrossRef Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsujii N, Rosochowski A, Yanagida A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann Manuf Technol 57:716–735CrossRef
2.
Zurück zum Zitat Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516CrossRef Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516CrossRef
3.
Zurück zum Zitat Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater 57:4198–4208CrossRef Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater 57:4198–4208CrossRef
4.
Zurück zum Zitat Zehetbauer M, Zhu YT (2009) Bulk nanostructured materials. Wiley-VCH, WeinheimCrossRef Zehetbauer M, Zhu YT (2009) Bulk nanostructured materials. Wiley-VCH, WeinheimCrossRef
5.
Zurück zum Zitat Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef
6.
Zurück zum Zitat Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef
7.
Zurück zum Zitat Konieczny M (2012) Microstructural characterisation and mechanical response of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Mater Charact 70:117–124CrossRef Konieczny M (2012) Microstructural characterisation and mechanical response of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Mater Charact 70:117–124CrossRef
8.
Zurück zum Zitat Kamikawa N, Sakai T, Tsuji N (2007) Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater 55:5873–5888CrossRef Kamikawa N, Sakai T, Tsuji N (2007) Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater 55:5873–5888CrossRef
9.
Zurück zum Zitat Yu H, Lu C, Tieu AK, Li H, Godbole A, Kong C (2016) Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater Sci Eng, A 660:195–204CrossRef Yu H, Lu C, Tieu AK, Li H, Godbole A, Kong C (2016) Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater Sci Eng, A 660:195–204CrossRef
10.
Zurück zum Zitat Yang D, Cizek P, Hodgson P, Wen C (2010) Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr Mater 62:321–324CrossRef Yang D, Cizek P, Hodgson P, Wen C (2010) Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr Mater 62:321–324CrossRef
11.
Zurück zum Zitat Gurevich L, Pronichev D, Trunov M (2016) Structure formation mechanisms during solid Ti with molten Al interaction. IOP Conf Ser Mater Sci Eng 116:12011–12020CrossRef Gurevich L, Pronichev D, Trunov M (2016) Structure formation mechanisms during solid Ti with molten Al interaction. IOP Conf Ser Mater Sci Eng 116:12011–12020CrossRef
12.
Zurück zum Zitat Luo J-G, Acoff VL (2004) Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater Sci Eng, A 379:164–172CrossRef Luo J-G, Acoff VL (2004) Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater Sci Eng, A 379:164–172CrossRef
13.
Zurück zum Zitat Jamaati R, Toroghinejad MR, Amirkhanlou S, Edris H (2015) Microstructural evolution of nanostructured steel-based composite fabricated by accumulative roll bonding. Mater Sci Eng, A 639:298–306CrossRef Jamaati R, Toroghinejad MR, Amirkhanlou S, Edris H (2015) Microstructural evolution of nanostructured steel-based composite fabricated by accumulative roll bonding. Mater Sci Eng, A 639:298–306CrossRef
14.
Zurück zum Zitat Jindal V, Srivastava VC, Ghosh RN (2008) Development of IF steel–Al multilayer composite by repetitive roll bonding and annealing process. Mater Sci Technol 24:798–802CrossRef Jindal V, Srivastava VC, Ghosh RN (2008) Development of IF steel–Al multilayer composite by repetitive roll bonding and annealing process. Mater Sci Technol 24:798–802CrossRef
15.
Zurück zum Zitat Jindal V, Srivastava VC, Das A, Ghosh RN (2006) Reactive diffusion in the roll bonded iron–aluminum system. Mater Lett 60:1758–1761CrossRef Jindal V, Srivastava VC, Das A, Ghosh RN (2006) Reactive diffusion in the roll bonded iron–aluminum system. Mater Lett 60:1758–1761CrossRef
16.
Zurück zum Zitat Tayyebi M, Eghbali B (2012) Processing of Al/304 stainless steel composite by roll bonding. Mater Sci Technol 28:1414–1419CrossRef Tayyebi M, Eghbali B (2012) Processing of Al/304 stainless steel composite by roll bonding. Mater Sci Technol 28:1414–1419CrossRef
17.
Zurück zum Zitat Daneshvar F, Reihanian M, Gheisari K (2016) Al-based magnetic composites produced by accumulative roll bonding (ARB). Mater Sci Eng, B 206:45–54CrossRef Daneshvar F, Reihanian M, Gheisari K (2016) Al-based magnetic composites produced by accumulative roll bonding (ARB). Mater Sci Eng, B 206:45–54CrossRef
18.
Zurück zum Zitat Mozaffari A, Danesh Manesh H, Janghorban K (2010) Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloys Compd 489:103–109CrossRef Mozaffari A, Danesh Manesh H, Janghorban K (2010) Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloys Compd 489:103–109CrossRef
19.
Zurück zum Zitat Ji C, He Y, Wang CT, He Y, Pan X, Jiao J, Guo L (2017) Investigation on shock-induced reaction characteristics of an Al/Ni composite processed via accumulative roll-bonding. Mater Des 116:591–598CrossRef Ji C, He Y, Wang CT, He Y, Pan X, Jiao J, Guo L (2017) Investigation on shock-induced reaction characteristics of an Al/Ni composite processed via accumulative roll-bonding. Mater Des 116:591–598CrossRef
20.
Zurück zum Zitat Simões S, Ramos AS, Viana F, Emadinia O, Vieira MT, Vieira MF (2016) Ni/Al multilayers produced by accumulative roll bonding and sputtering. J Mater Eng Perform 25:4394–4401CrossRef Simões S, Ramos AS, Viana F, Emadinia O, Vieira MT, Vieira MF (2016) Ni/Al multilayers produced by accumulative roll bonding and sputtering. J Mater Eng Perform 25:4394–4401CrossRef
21.
Zurück zum Zitat Brunelli K, Peruzzo L (2015) The effect of prolonged heat treatments on the microstructural evolution of Al/Ni intermetallic compounds in multi layered composites. Mater Chem Phys 150:350–358CrossRef Brunelli K, Peruzzo L (2015) The effect of prolonged heat treatments on the microstructural evolution of Al/Ni intermetallic compounds in multi layered composites. Mater Chem Phys 150:350–358CrossRef
22.
Zurück zum Zitat Srivastava VC, Singh T, Ghosh Chowdhury S, Jindal V (2012) Microstructural characteristics of accumulative roll-bonded Ni-Al-based metal-intermetallic laminate composite. J Mater Eng Perform 21:1912–1918CrossRef Srivastava VC, Singh T, Ghosh Chowdhury S, Jindal V (2012) Microstructural characteristics of accumulative roll-bonded Ni-Al-based metal-intermetallic laminate composite. J Mater Eng Perform 21:1912–1918CrossRef
24.
Zurück zum Zitat Eizadjou M, Kazemi-Talachi A, Danesh-Manesh H, Shakur-Shahabi H, Janghorban K (2008) Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos Sci Technol 68:2003–2009CrossRef Eizadjou M, Kazemi-Talachi A, Danesh-Manesh H, Shakur-Shahabi H, Janghorban K (2008) Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos Sci Technol 68:2003–2009CrossRef
25.
Zurück zum Zitat Khademzadeh S, Toroghinejad MR, Ashrafizadeh F (2012) Structural evolution and interdiffusion in Al/Cu nanocomposites produced by a novel manufacturing process. Met Mater Int 18:1049–1054CrossRef Khademzadeh S, Toroghinejad MR, Ashrafizadeh F (2012) Structural evolution and interdiffusion in Al/Cu nanocomposites produced by a novel manufacturing process. Met Mater Int 18:1049–1054CrossRef
27.
Zurück zum Zitat Li X, Zu G, Wang P (2015) Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China 25:36–45CrossRef Li X, Zu G, Wang P (2015) Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China 25:36–45CrossRef
28.
Zurück zum Zitat Chang H, Zheng MY, Xu C, Fan GD, Brokmeier HG, Wu K (2012) Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature. Mater Sci Eng, A 543:249–256CrossRef Chang H, Zheng MY, Xu C, Fan GD, Brokmeier HG, Wu K (2012) Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature. Mater Sci Eng, A 543:249–256CrossRef
29.
Zurück zum Zitat Nie J, Liu M, Wang F, Zhao Y, Li Y, Cao Y, Zhu Y (2016) Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties. Materials 9:1–14CrossRef Nie J, Liu M, Wang F, Zhao Y, Li Y, Cao Y, Zhu Y (2016) Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties. Materials 9:1–14CrossRef
30.
Zurück zum Zitat Xin Y, Hong R, Feng B, Yu H, Wu Y, Liu Q (2015) Fabrication of Mg/Al multilayer plates using an accumulative extrusion bonding process. Mater Sci Eng, A 640:210–216CrossRef Xin Y, Hong R, Feng B, Yu H, Wu Y, Liu Q (2015) Fabrication of Mg/Al multilayer plates using an accumulative extrusion bonding process. Mater Sci Eng, A 640:210–216CrossRef
32.
Zurück zum Zitat Mahdavian MM, Khatami-Hamedani H, Abedi HR (2017) Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J Alloys Compd 703:605–613CrossRef Mahdavian MM, Khatami-Hamedani H, Abedi HR (2017) Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J Alloys Compd 703:605–613CrossRef
33.
Zurück zum Zitat Yang D, Hodgson P, Wen C (2009) The kinetics of two-stage formation of TiAl3 in multilayered Ti/Al foils prepared by accumulative roll bonding. Intermetallics 17:727–732CrossRef Yang D, Hodgson P, Wen C (2009) The kinetics of two-stage formation of TiAl3 in multilayered Ti/Al foils prepared by accumulative roll bonding. Intermetallics 17:727–732CrossRef
34.
Zurück zum Zitat Mozaffari A, Hosseini M, Manesh HD (2011) Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing. J Alloys Compd 509:9938–9945CrossRef Mozaffari A, Hosseini M, Manesh HD (2011) Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing. J Alloys Compd 509:9938–9945CrossRef
35.
Zurück zum Zitat Azimi M, Toroghinejad MR, Shamanian M, Kestens LAI (2017) The effect of strain on the formation of an intermetallic layer in an Al-Ni laminated composite. Metals 7:1–14CrossRef Azimi M, Toroghinejad MR, Shamanian M, Kestens LAI (2017) The effect of strain on the formation of an intermetallic layer in an Al-Ni laminated composite. Metals 7:1–14CrossRef
36.
Zurück zum Zitat Yu HL, Lu C, Tieu AK, Kong C (2014) Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Mater Manuf Process 29:448–453CrossRef Yu HL, Lu C, Tieu AK, Kong C (2014) Fabrication of nanostructured aluminum sheets using four-layer accumulative roll bonding. Mater Manuf Process 29:448–453CrossRef
37.
Zurück zum Zitat Min G, Lee J-M, Kang S-B, Kim H-W (2006) Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process. Mater Lett 60:3255–3259CrossRef Min G, Lee J-M, Kang S-B, Kim H-W (2006) Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process. Mater Lett 60:3255–3259CrossRef
38.
Zurück zum Zitat Tsuji N, Kamikawa N, Li BL (2007) Grain size saturation during severe plastic deformation. Mater Sci Forum 539–543:2837–2842CrossRef Tsuji N, Kamikawa N, Li BL (2007) Grain size saturation during severe plastic deformation. Mater Sci Forum 539–543:2837–2842CrossRef
39.
Zurück zum Zitat Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res 40:319–343CrossRef Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res 40:319–343CrossRef
40.
Zurück zum Zitat Pragnell PB, Bowen JR, Gholinia A (2001) Science of metastable and nanocrystalline alloys, structure properties and modelling. In: Proceedings of the 22nd Risø international symposium on materials science, pp 105–125 Pragnell PB, Bowen JR, Gholinia A (2001) Science of metastable and nanocrystalline alloys, structure properties and modelling. In: Proceedings of the 22nd Risø international symposium on materials science, pp 105–125
41.
Zurück zum Zitat Pirgazi H, Akbarzadeh A, Petrov R, Kestens L (2008) Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater Sci Eng, A 497:132–138CrossRef Pirgazi H, Akbarzadeh A, Petrov R, Kestens L (2008) Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater Sci Eng, A 497:132–138CrossRef
42.
Zurück zum Zitat Tóth LS, Beausir B, Gu CF, Estrin Y, Scheerbaum N, Davies CHJ (2010) Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution. Acta Mater 58:6706–6716CrossRef Tóth LS, Beausir B, Gu CF, Estrin Y, Scheerbaum N, Davies CHJ (2010) Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution. Acta Mater 58:6706–6716CrossRef
44.
Zurück zum Zitat Gu CF, Toth LS, Rusz S, Bova M (2014) Texture induced grain coarsening in severe plastic deformed low carbon steel. Scr Mater 86:36–39CrossRef Gu CF, Toth LS, Rusz S, Bova M (2014) Texture induced grain coarsening in severe plastic deformed low carbon steel. Scr Mater 86:36–39CrossRef
45.
Zurück zum Zitat Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier Ltd., Oxford Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier Ltd., Oxford
46.
Zurück zum Zitat Liu FC, Ma ZY (2010) Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr Mater 62:125–128CrossRef Liu FC, Ma ZY (2010) Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr Mater 62:125–128CrossRef
47.
Zurück zum Zitat Lee S, Saito Y, Tsuji N, Utsunomiya H, Sakai T (2002) Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scr Mater 46:281–285CrossRef Lee S, Saito Y, Tsuji N, Utsunomiya H, Sakai T (2002) Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scr Mater 46:281–285CrossRef
48.
Zurück zum Zitat Jamaati R, Toroghinejad MR, Hoseini M, Szpunar JA (2012) Development of texture during ARB in metal matrix composite. Mater Sci Technol 28:406–410CrossRef Jamaati R, Toroghinejad MR, Hoseini M, Szpunar JA (2012) Development of texture during ARB in metal matrix composite. Mater Sci Technol 28:406–410CrossRef
49.
Zurück zum Zitat Jin H, Gallerneault M, Segal VM, Young PJ, Lloyd DJ (2010) Grain structure and texture in aluminium alloy AA5083 after equal angular channel extrusion, warm rolling and subsequent annealing. Mater Sci Technol 27:789–792CrossRef Jin H, Gallerneault M, Segal VM, Young PJ, Lloyd DJ (2010) Grain structure and texture in aluminium alloy AA5083 after equal angular channel extrusion, warm rolling and subsequent annealing. Mater Sci Technol 27:789–792CrossRef
50.
Zurück zum Zitat Engler O, Huh MY, Tome CN (2000) A study of through-thickness texture gradients in rolled. Metall Mater Trans A 31:2299–2315CrossRef Engler O, Huh MY, Tome CN (2000) A study of through-thickness texture gradients in rolled. Metall Mater Trans A 31:2299–2315CrossRef
51.
Zurück zum Zitat Qu P, Zhou L, Acoff VL (2015) Deformation textures of aluminum in a multilayered Ti/Al/Nb composite severely deformed by accumulative roll bonding. Mater Charact 107:367–375CrossRef Qu P, Zhou L, Acoff VL (2015) Deformation textures of aluminum in a multilayered Ti/Al/Nb composite severely deformed by accumulative roll bonding. Mater Charact 107:367–375CrossRef
52.
Zurück zum Zitat Raei M, Reza M, Jamaati R, Szpunar JA (2010) Effect of ARB process on textural evolution of AA1100 aluminum alloy. Mater Sci Eng, A 527:7068–7073CrossRef Raei M, Reza M, Jamaati R, Szpunar JA (2010) Effect of ARB process on textural evolution of AA1100 aluminum alloy. Mater Sci Eng, A 527:7068–7073CrossRef
53.
Zurück zum Zitat Orlov D, Bhattacharjee PP, Todaka Y, Umemoto M, Tsuji N (2009) Texture evolution in pure aluminum subjected to monotonous and reversal straining in high-pressure torsion. Scr Mater 60:893–896CrossRef Orlov D, Bhattacharjee PP, Todaka Y, Umemoto M, Tsuji N (2009) Texture evolution in pure aluminum subjected to monotonous and reversal straining in high-pressure torsion. Scr Mater 60:893–896CrossRef
55.
Zurück zum Zitat Chowdhury SG, Mondal A, Gubicza J, Krállics G, Fodor Á (2008) Evolution of microstructure and texture in an ultrafine-grained Al6082 alloy during severe plastic deformation. Mater Sci Eng, A 490:335–342CrossRef Chowdhury SG, Mondal A, Gubicza J, Krállics G, Fodor Á (2008) Evolution of microstructure and texture in an ultrafine-grained Al6082 alloy during severe plastic deformation. Mater Sci Eng, A 490:335–342CrossRef
56.
Zurück zum Zitat Naghdy S, Kestens L, Hertelé S, Verleysen P (2016) Evolution of microstructure and texture in commercial pure aluminum subjected to high pressure torsion processing. Mater Charact 120:285–294CrossRef Naghdy S, Kestens L, Hertelé S, Verleysen P (2016) Evolution of microstructure and texture in commercial pure aluminum subjected to high pressure torsion processing. Mater Charact 120:285–294CrossRef
57.
Zurück zum Zitat Seefeldt M, Delannay L, Peeters B, Kalidindi SR, Van Houtte P (2001) A disclination-based model for grain subdivision. Mater Sci Eng, A 319:192–196CrossRef Seefeldt M, Delannay L, Peeters B, Kalidindi SR, Van Houtte P (2001) A disclination-based model for grain subdivision. Mater Sci Eng, A 319:192–196CrossRef
58.
Zurück zum Zitat Tóth LS, Estrin Y, Lapovok R, Gu C (2010) A model of grain fragmentation based on lattice curvature. Acta Mater 58:1782–1794CrossRef Tóth LS, Estrin Y, Lapovok R, Gu C (2010) A model of grain fragmentation based on lattice curvature. Acta Mater 58:1782–1794CrossRef
Metadaten
Titel
Grain and texture evolution in nano/ultrafine-grained bimetallic Al/Ni composite during accumulative roll bonding
verfasst von
Monireh Azimi
Mohammad Reza Toroghinejad
Morteza Shamanian
Leo A. I. Kestens
Publikationsdatum
05.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2510-2

Weitere Artikel der Ausgabe 17/2018

Journal of Materials Science 17/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.