Skip to main content
Erschienen in: Journal of Scientific Computing 2/2015

01.02.2015

Dispersion Relation Preserving Combined Compact Difference Schemes for Flow Problems

verfasst von: C. H. Yu, Yogesh G. Bhumkar, Tony W. H. Sheu

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we have proposed two new combined compact difference (CCD) schemes for the solution of Navier–Stokes equations. These spatial discretization schemes have not only high spectral resolution for obtaining first and second derivative terms, but also have improved dispersion relation preserving properties when the fourth-order four-stage Runge–Kutta scheme is used for time integration. Out of the two proposed CCD schemes, the first scheme has upwind stencil, while the second scheme has a central stencil. Important numerical properties of these schemes have been analyzed and their effectiveness have been shown by solving the model wave equations, as well as Navier–Stokes equations. Results show that the upwind CCD scheme is suitable for high accuracy large eddy simulation of transitional and turbulent flowfields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chiu, P.H., Sheu, T.W.H.: On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640–3655 (2009)CrossRefMATH Chiu, P.H., Sheu, T.W.H.: On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640–3655 (2009)CrossRefMATH
2.
Zurück zum Zitat Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)CrossRefMATHMathSciNet Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)CrossRefMATHMathSciNet
3.
Zurück zum Zitat Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)CrossRefMATHMathSciNet Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)CrossRefMATH Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)CrossRefMATH
6.
Zurück zum Zitat Sengupta, T.K., Sircar, S.K., Dipankar, A.: High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26, 151–193 (2006)CrossRefMATHMathSciNet Sengupta, T.K., Sircar, S.K., Dipankar, A.: High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26, 151–193 (2006)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)CrossRefMATHMathSciNet Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)CrossRefMATHMathSciNet
8.
Zurück zum Zitat Meitz, H.L., Fasel, H.F.: A compact-difference scheme for the Navier–Stokes equations in vorticity-velocity formulation. J. Comput. Phys. 157, 371–403 (2000)CrossRefMATHMathSciNet Meitz, H.L., Fasel, H.F.: A compact-difference scheme for the Navier–Stokes equations in vorticity-velocity formulation. J. Comput. Phys. 157, 371–403 (2000)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183, 438–469 (2002)CrossRefMATH Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183, 438–469 (2002)CrossRefMATH
10.
Zurück zum Zitat Nagarajan, S., Lele, S.K.: A robust high order compact method for large eddy simulation. J. Comput. Phys. 191, 392–419 (2003)CrossRefMATHMathSciNet Nagarajan, S., Lele, S.K.: A robust high order compact method for large eddy simulation. J. Comput. Phys. 191, 392–419 (2003)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Park, N., Yoo, J.Y., Choi, H.: Discretization errors in large eddy simulation: on the suitability of centered and upwind biased compact difference schemes. J. Comput. Phys. 198, 580–616 (2004)CrossRefMATH Park, N., Yoo, J.Y., Choi, H.: Discretization errors in large eddy simulation: on the suitability of centered and upwind biased compact difference schemes. J. Comput. Phys. 198, 580–616 (2004)CrossRefMATH
12.
Zurück zum Zitat Zhong, X.: High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144, 662–709 (1998)CrossRefMATHMathSciNet Zhong, X.: High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144, 662–709 (1998)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144–154 (2011)CrossRefMATHMathSciNet Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144–154 (2011)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Ekaterinaris, J.A.: Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J. Comput. Phys. 156, 272–299 (1999)CrossRefMATHMathSciNet Ekaterinaris, J.A.: Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J. Comput. Phys. 156, 272–299 (1999)CrossRefMATHMathSciNet
15.
Zurück zum Zitat Shang, J.S.: High-order compact-difference schemes for time-dependent maxwell equations. J. Comput. Phys. 153, 312–333 (1999)CrossRefMATHMathSciNet Shang, J.S.: High-order compact-difference schemes for time-dependent maxwell equations. J. Comput. Phys. 153, 312–333 (1999)CrossRefMATHMathSciNet
16.
Zurück zum Zitat Zhou, Q., Yao, Z., He, F., Shen, M.Y.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227, 1306–1339 (2007)CrossRefMATHMathSciNet Zhou, Q., Yao, Z., He, F., Shen, M.Y.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227, 1306–1339 (2007)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Mahesh, K.: A family of high order finite difference schemes with good spectral resolution. J. Comput. Phys. 145, 332–358 (1998)CrossRefMATHMathSciNet Mahesh, K.: A family of high order finite difference schemes with good spectral resolution. J. Comput. Phys. 145, 332–358 (1998)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Dipankar, A., Sengupta, T.K.: Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J. Comput. Phys. 215, 245–273 (2006)CrossRefMATH Dipankar, A., Sengupta, T.K.: Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J. Comput. Phys. 215, 245–273 (2006)CrossRefMATH
19.
Zurück zum Zitat Sengupta, T.K.: High Accuracy Computing Methods: Fluid Flows and Wave Phenomena. Cambridge University Press, Cambridge, MA (2013)CrossRef Sengupta, T.K.: High Accuracy Computing Methods: Fluid Flows and Wave Phenomena. Cambridge University Press, Cambridge, MA (2013)CrossRef
21.
Zurück zum Zitat Sengupta, T.K., Lakshmanan, V., Vijay, V.V.S.N.: A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228, 3048–3071 (2009)CrossRefMATHMathSciNet Sengupta, T.K., Lakshmanan, V., Vijay, V.V.S.N.: A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228, 3048–3071 (2009)CrossRefMATHMathSciNet
22.
Zurück zum Zitat Sengupta, T.K., Vijay, V.V.S.N., Bhaumik, S.: Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228, 6150–6168 (2009)CrossRefMATH Sengupta, T.K., Vijay, V.V.S.N., Bhaumik, S.: Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228, 6150–6168 (2009)CrossRefMATH
23.
Zurück zum Zitat Arakawa, A.: Computational design of long term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119–143 (1966)CrossRefMATH Arakawa, A.: Computational design of long term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119–143 (1966)CrossRefMATH
24.
Zurück zum Zitat Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)CrossRefMATHMathSciNet Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and application. J. Comput. Phys. 191, 249–264 (2003)CrossRefMATH Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and application. J. Comput. Phys. 191, 249–264 (2003)CrossRefMATH
26.
Zurück zum Zitat Sengupta, T.K., Bhaumik, S., Bhumkar, Y.G.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E. 85, 026308 (2012)CrossRef Sengupta, T.K., Bhaumik, S., Bhumkar, Y.G.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E. 85, 026308 (2012)CrossRef
27.
Zurück zum Zitat Sengupta, T.K., Nair, M.T.: Upwind schemes and large eddy simulation. Int. J. Numer. Methods Fluids 31, 879–889 (1999)CrossRefMATH Sengupta, T.K., Nair, M.T.: Upwind schemes and large eddy simulation. Int. J. Numer. Methods Fluids 31, 879–889 (1999)CrossRefMATH
28.
Zurück zum Zitat Lesieur, M., Metais, O.: New trends in large eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)CrossRefMathSciNet Lesieur, M., Metais, O.: New trends in large eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)CrossRefMathSciNet
29.
Zurück zum Zitat Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comput. 21, 225–250 (2004)CrossRefMATHMathSciNet Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comput. 21, 225–250 (2004)CrossRefMATHMathSciNet
30.
Zurück zum Zitat Sengupta, T.K., Bhumkar, Y.G., Rajpoot, M., Suman, V.K., Saurabh, S.: Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)CrossRefMATHMathSciNet Sengupta, T.K., Bhumkar, Y.G., Rajpoot, M., Suman, V.K., Saurabh, S.: Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Sheu, T.W.H., Chiu, P.H.: A divergence-free-condition compensated method for incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 196, 4479–4494 (2007)CrossRefMATHMathSciNet Sheu, T.W.H., Chiu, P.H.: A divergence-free-condition compensated method for incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 196, 4479–4494 (2007)CrossRefMATHMathSciNet
32.
Zurück zum Zitat Green, S.I.: Fluid Vortices: Fluid Mechanics and Its Applications. Springer, Berlin (1995)CrossRefMATH Green, S.I.: Fluid Vortices: Fluid Mechanics and Its Applications. Springer, Berlin (1995)CrossRefMATH
33.
Zurück zum Zitat Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRefMATH Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)CrossRefMATH
34.
Zurück zum Zitat Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)CrossRefMATH Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)CrossRefMATH
35.
Zurück zum Zitat Bruneau, C.-H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)CrossRefMATH Bruneau, C.-H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)CrossRefMATH
36.
Zurück zum Zitat Peng, Y.F., Shiau, Y.H., Hwang, R.R.: Transition in a 2D lid driven cavity flow. Comput. Fluids 32, 337–352 (2003)CrossRefMATH Peng, Y.F., Shiau, Y.H., Hwang, R.R.: Transition in a 2D lid driven cavity flow. Comput. Fluids 32, 337–352 (2003)CrossRefMATH
37.
Zurück zum Zitat Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Decaying two-dimensional turbulence in square containers with no-slip or stress-free boundaries. Phys. Fluids 11, 611–626 (1999)CrossRefMATH Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Decaying two-dimensional turbulence in square containers with no-slip or stress-free boundaries. Phys. Fluids 11, 611–626 (1999)CrossRefMATH
38.
Zurück zum Zitat Clercx, H.J.H., van Heijst, G.J.F.: Energy spectra for decaying 2D turbulence in a bounded domain. Phys. Rev. Lett. 85, 306–309 (2000)CrossRef Clercx, H.J.H., van Heijst, G.J.F.: Energy spectra for decaying 2D turbulence in a bounded domain. Phys. Rev. Lett. 85, 306–309 (2000)CrossRef
39.
Zurück zum Zitat Sengupta, T.K., Singh, H., Bhaumik, S., Chowdhury, R.R.: Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comput. Fluids 88, 440–451 (2013)CrossRefMathSciNet Sengupta, T.K., Singh, H., Bhaumik, S., Chowdhury, R.R.: Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comput. Fluids 88, 440–451 (2013)CrossRefMathSciNet
40.
Zurück zum Zitat Braccoa, A., McWilliams, J.C., Murante, G., Provenzale, A., Weiss, J.B.: Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12, 2931–2941 (2000)CrossRef Braccoa, A., McWilliams, J.C., Murante, G., Provenzale, A., Weiss, J.B.: Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12, 2931–2941 (2000)CrossRef
41.
Zurück zum Zitat Lo, D.C., Murugesan, K., Young, D.L.: Numerical solution of three-dimensional velocity–vorticity incompressible Navier–Stokes equations by finite difference method. Int. J. Numer. Methods Fluids 47, 1469–1487 (2005)CrossRefMATH Lo, D.C., Murugesan, K., Young, D.L.: Numerical solution of three-dimensional velocity–vorticity incompressible Navier–Stokes equations by finite difference method. Int. J. Numer. Methods Fluids 47, 1469–1487 (2005)CrossRefMATH
42.
Zurück zum Zitat Ding, H., Shu, C., Yeo, K.S., Xu, D.: Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method. Comput. Methods Appl. Mech. Eng. 195, 516–533 (2006)CrossRefMATH Ding, H., Shu, C., Yeo, K.S., Xu, D.: Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method. Comput. Methods Appl. Mech. Eng. 195, 516–533 (2006)CrossRefMATH
Metadaten
Titel
Dispersion Relation Preserving Combined Compact Difference Schemes for Flow Problems
verfasst von
C. H. Yu
Yogesh G. Bhumkar
Tony W. H. Sheu
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2015
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9864-7

Weitere Artikel der Ausgabe 2/2015

Journal of Scientific Computing 2/2015 Zur Ausgabe