Skip to main content
Erschienen in: Journal of Scientific Computing 3/2016

10.10.2015

Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations

verfasst von: Tao Xiong, Jing-Mei Qiu, Zhengfu Xu

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we develop parametrized positivity satisfying flux limiters for the high order finite difference Runge–Kutta weighted essentially non-oscillatory scheme solving compressible Euler equations to maintain positive density and pressure. Negative density and pressure, which often leads to simulation blow-ups or nonphysical solutions, emerges from many high resolution computations in some extreme cases. The methodology we propose in this paper is a nontrivial generalization of the parametrized maximum principle preserving flux limiters for high order finite difference schemes solving scalar hyperbolic conservation laws (Liang and Xu in J Sci Comput 58:41–60, 2014; Xiong et al. in J Comput Phys 252:310–331, 2013; Xu in Math Comput 83:2213–2238, 2014). To preserve the maximum principle, the high order flux is limited towards a first order monotone flux, where the limiting procedures are designed by decoupling linear maximum principle constraints. High order schemes with such flux limiters are shown to preserve the high order accuracy via local truncation error analysis and by extensive numerical experiments with mild CFL constraints. The parametrized flux limiting approach is generalized to the Euler system to preserve the positivity of density and pressure of numerical solutions via decoupling some nonlinear constraints. Compared with existing high order positivity preserving approaches (Zhang and Shu in Proc R Soc A Math Phys Eng Sci 467:2752–2776, 2011; J Comput Phys 230:1238–1248, 2011; J Comput Phys 231:2245–2258, 2012), our proposed algorithm is positivity preserving by the design; it is computationally efficient and maintains high order spatial and temporal accuracy in our extensive numerical tests. Numerical tests are performed to demonstrate the efficiency and effectiveness of the proposed new algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)MathSciNetCrossRefMATH Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)CrossRefMATH Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)CrossRefMATH
3.
Zurück zum Zitat Chakravarthy, S.R., Osher, S.: High Resolution Applications of the Osher Upwind Scheme for the Euler Equations. AIAA (1983) Chakravarthy, S.R., Osher, S.: High Resolution Applications of the Osher Upwind Scheme for the Euler Equations. AIAA (1983)
4.
Zurück zum Zitat Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)MathSciNetCrossRefMATH Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Engquist, B., Osher, S.: Stable and entropy satisfying approximations for transonic flow calculations. Math. Comput. 34, 45–75 (1980)MathSciNetCrossRefMATH Engquist, B., Osher, S.: Stable and entropy satisfying approximations for transonic flow calculations. Math. Comput. 34, 45–75 (1980)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Engquist, B., Sjögreen, B.: The convergence rate of finite difference schemes in the presence of shocks. SIAM J. Numer. Anal. 35, 2464–2485 (1998)MathSciNetCrossRefMATH Engquist, B., Sjögreen, B.: The convergence rate of finite difference schemes in the presence of shocks. SIAM J. Numer. Anal. 35, 2464–2485 (1998)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNetCrossRef Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNetCrossRef
8.
Zurück zum Zitat Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139–159 (2013)MathSciNetCrossRefMATH Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139–159 (2013)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high mach number astrophysical jets. J. Sci. Comput. 34, 247–259 (2008)MathSciNetCrossRefMATH Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high mach number astrophysical jets. J. Sci. Comput. 34, 247–259 (2008)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)MathSciNetCrossRefMATH Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)CrossRefMATH Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)CrossRefMATH
12.
13.
Zurück zum Zitat Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)MathSciNetCrossRefMATH Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)MathSciNetCrossRefMATH
14.
15.
Zurück zum Zitat Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58, 41–60 (2014)MathSciNetCrossRefMATH Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58, 41–60 (2014)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Linde, T., Roe, P.L.: Robust Euler codes. In: Thirteenth Computational Fluid Dynamics Conference, AIAA Paper-97-2098 (1997) Linde, T., Roe, P.L.: Robust Euler codes. In: Thirteenth Computational Fluid Dynamics Conference, AIAA Paper-97-2098 (1997)
17.
Zurück zum Zitat Liu, X.-D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33, 760–779 (1996)MathSciNetCrossRefMATH Liu, X.-D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33, 760–779 (1996)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Perthame, B.: Second-order boltzmann schemes for compressible euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29, 1–19 (1992)MathSciNetCrossRefMATH Perthame, B.: Second-order boltzmann schemes for compressible euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29, 1–19 (1992)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996)MathSciNetCrossRefMATH Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432 (1998) Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432 (1998)
21.
Zurück zum Zitat Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefMATH Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)MathSciNetCrossRefMATH Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)CrossRefMATH Van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)CrossRefMATH
24.
Zurück zum Zitat Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefMATH Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228, 6682–6702 (2009)MathSciNetCrossRefMATH Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228, 6682–6702 (2009)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)MathSciNetCrossRef Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)MathSciNetCrossRef Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)MathSciNetCrossRef
28.
Zurück zum Zitat Xu, Z.: Parametrized maximum principle preserving flux limiters for high order scheme solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83, 2213–2238 (2014)CrossRefMATH Xu, Z.: Parametrized maximum principle preserving flux limiters for high order scheme solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83, 2213–2238 (2014)CrossRefMATH
29.
Zurück zum Zitat Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 2752–2776 (2011)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 2752–2776 (2011)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)MathSciNetCrossRefMATH
Metadaten
Titel
Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations
verfasst von
Tao Xiong
Jing-Mei Qiu
Zhengfu Xu
Publikationsdatum
10.10.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0118-0

Weitere Artikel der Ausgabe 3/2016

Journal of Scientific Computing 3/2016 Zur Ausgabe