Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2008

01.10.2008 | Research Paper

Structural transformation of vapor grown carbon nanofibers studied by HRTEM

verfasst von: Joseph G. Lawrence, Lesley M. Berhan, Arunan Nadarajah

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vapor grown carbon nanofibers have been extensively manufactured and investigated in recent years. In this study commercially available vapor grown carbon nanofibers subjected to different processing and post processing conditions were studied employing high resolution TEM images. The analysis showed that the fibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Fibers that have been heat treated to temperatures above 1,500 °C undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. The bamboo nanofibers were found to have a tapered multiwall nanotube structure for the wall and a multishell fullerene structure for the cap of each segment, surrounded by a disordered outer layer. When these fibers are heat treated the disordered outer layers transform to an ordered multiwall nanotube structure and merge with the wall of each segment. The end caps of each segment transform from a smooth multiwall fullerene structure to one consisting of disjointed graphene planes. A reaction-diffusion mechanism is proposed to explain the growth and structure of the bamboo nanofibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amelinckx S, Luyten W, Krekels T, Van Tendeloo G, Van Landuyt J (1992) Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”. J Cryst Growth 12:543–558CrossRef Amelinckx S, Luyten W, Krekels T, Van Tendeloo G, Van Landuyt J (1992) Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”. J Cryst Growth 12:543–558CrossRef
Zurück zum Zitat Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323CrossRef Baker RTK (1989) Catalytic growth of carbon filaments. Carbon 27:315–323CrossRef
Zurück zum Zitat Blank VD, Polyakov EV, Batov DV, Kulnitskiy BA, Bangert U, Gutierrez-Sosa A, Harvey AJ, Seepujak A (2003) Formation of N-containing C-nanotubes and nanofibres by carbon resistive heating under high nitrogen pressure. Diamond Relat Mater 12:864–869CrossRef Blank VD, Polyakov EV, Batov DV, Kulnitskiy BA, Bangert U, Gutierrez-Sosa A, Harvey AJ, Seepujak A (2003) Formation of N-containing C-nanotubes and nanofibres by carbon resistive heating under high nitrogen pressure. Diamond Relat Mater 12:864–869CrossRef
Zurück zum Zitat Bourgeois L, Bando Y, Kurashima K, Sato T (2000a) Co-produced carbon and boron nitride helical cones and the nucleation of curved BN sheets. Philos Mag A 80:129–142CrossRef Bourgeois L, Bando Y, Kurashima K, Sato T (2000a) Co-produced carbon and boron nitride helical cones and the nucleation of curved BN sheets. Philos Mag A 80:129–142CrossRef
Zurück zum Zitat Bourgeois L, Bando Y, Sato T (2000b) Tubes of rhombohedral boron nitride. J Phys D 33:1902–1908CrossRef Bourgeois L, Bando Y, Sato T (2000b) Tubes of rhombohedral boron nitride. J Phys D 33:1902–1908CrossRef
Zurück zum Zitat Butenko YV, Krishnamurthy S, Chakraborty AK, Kuznetsov VL, Dhanak VR, Hunt MRC, Šiller L (2005) Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys Rev B 71:75420–75429CrossRef Butenko YV, Krishnamurthy S, Chakraborty AK, Kuznetsov VL, Dhanak VR, Hunt MRC, Šiller L (2005) Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys Rev B 71:75420–75429CrossRef
Zurück zum Zitat Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002) Interconnection of carbon nanotubes by chemical functionalization. Appl Phys Lett 80:3811–3813CrossRef Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002) Interconnection of carbon nanotubes by chemical functionalization. Appl Phys Lett 80:3811–3813CrossRef
Zurück zum Zitat Cui H, Yang X, Simpson ML, Lowndes DH, Varela M (2004) Initial growth of vertically aligned carbon nanofibers. Appl Phys Lett 84:4077–4079CrossRef Cui H, Yang X, Simpson ML, Lowndes DH, Varela M (2004) Initial growth of vertically aligned carbon nanofibers. Appl Phys Lett 84:4077–4079CrossRef
Zurück zum Zitat Darmstadt H, Roy C, Kaliaguine S, Ting JM, Alig RL (1998) Surface spectroscopic analysis of vapour grown carbon fibres prepared under various conditions. Carbon 36:1183–1190CrossRef Darmstadt H, Roy C, Kaliaguine S, Ting JM, Alig RL (1998) Surface spectroscopic analysis of vapour grown carbon fibres prepared under various conditions. Carbon 36:1183–1190CrossRef
Zurück zum Zitat Double DD, Hellawell A (1974) Defects in eutectic flake graphite. Cone–helix growth forms of graphite. Acta Metall 22:481–487CrossRef Double DD, Hellawell A (1974) Defects in eutectic flake graphite. Cone–helix growth forms of graphite. Acta Metall 22:481–487CrossRef
Zurück zum Zitat Eksioglu B, Nadarajah A (2006) Structural analysis of conical carbon nanofibers. Carbon 44:360–373CrossRef Eksioglu B, Nadarajah A (2006) Structural analysis of conical carbon nanofibers. Carbon 44:360–373CrossRef
Zurück zum Zitat Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked–type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1269CrossRef Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked–type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1269CrossRef
Zurück zum Zitat Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003). Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 41:1941–1947CrossRef Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003). Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 41:1941–1947CrossRef
Zurück zum Zitat Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110CrossRef Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110CrossRef
Zurück zum Zitat Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
Zurück zum Zitat Jaszczak JA, Robinson GW, Dimovski S, Gogotsi Y (2003) Naturally occurring graphite cones. Carbon 41:2085–2092CrossRef Jaszczak JA, Robinson GW, Dimovski S, Gogotsi Y (2003) Naturally occurring graphite cones. Carbon 41:2085–2092CrossRef
Zurück zum Zitat Kiselev NA, Sloan J, Zakharov DN, Kukovitskii EF, Hutchison JL, Hammer J, Kotosonov AS (1998) Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36:1149–1157CrossRef Kiselev NA, Sloan J, Zakharov DN, Kukovitskii EF, Hutchison JL, Hammer J, Kotosonov AS (1998) Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36:1149–1157CrossRef
Zurück zum Zitat Lakshminarayanan PV, Toghiani H, Pittman CU (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42:2433–2442CrossRef Lakshminarayanan PV, Toghiani H, Pittman CU (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42:2433–2442CrossRef
Zurück zum Zitat Lee CJ, Oark J (2000) Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl Phys Lett 77:3397–3399CrossRef Lee CJ, Oark J (2000) Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl Phys Lett 77:3397–3399CrossRef
Zurück zum Zitat Li J, Vergne MJ, Mowles ED, Zhong W-H, Hercules DM, Lukehart CM (2005) Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon 43:2883–2893CrossRef Li J, Vergne MJ, Mowles ED, Zhong W-H, Hercules DM, Lukehart CM (2005) Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon 43:2883–2893CrossRef
Zurück zum Zitat Naguib NN, Mueller YM, Bojczuk PM, Rossi MP, Katsikis PD, Gogotsi Y (2005) Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16:567–571CrossRef Naguib NN, Mueller YM, Bojczuk PM, Rossi MP, Katsikis PD, Gogotsi Y (2005) Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16:567–571CrossRef
Zurück zum Zitat O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRef O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRef
Zurück zum Zitat Oberlin A, Endo M, Koyama T (1976). Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRef Oberlin A, Endo M, Koyama T (1976). Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRef
Zurück zum Zitat Ozawa M, Goto H, Kusunoki M, Osawa E (2002) Continuously growing spiral carbon nanoparticles as the intermediates in the formation of fullerenes and nanoonions. J Phys Chem B 106:7135–7138CrossRef Ozawa M, Goto H, Kusunoki M, Osawa E (2002) Continuously growing spiral carbon nanoparticles as the intermediates in the formation of fullerenes and nanoonions. J Phys Chem B 106:7135–7138CrossRef
Zurück zum Zitat Paredes JI, Burghard M, Martínez-Alonso A, Tascón JMD (2005) Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. Appl Phys A 80:675–682CrossRef Paredes JI, Burghard M, Martínez-Alonso A, Tascón JMD (2005) Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. Appl Phys A 80:675–682CrossRef
Zurück zum Zitat Ros TG, Van Dillen AJ, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibers. Euro J Chem 8:1151–1162CrossRef Ros TG, Van Dillen AJ, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibers. Euro J Chem 8:1151–1162CrossRef
Zurück zum Zitat Saito Y, Yoshikawa T (1993) Bamboo-shaped carbon tube filled partially with nickel. J Cryst Growth 134:154–156CrossRef Saito Y, Yoshikawa T (1993) Bamboo-shaped carbon tube filled partially with nickel. J Cryst Growth 134:154–156CrossRef
Zurück zum Zitat Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33:979–988CrossRef Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33:979–988CrossRef
Zurück zum Zitat Shioyama H (2005) The production of a sheath around a stacked-cup carbon nanofiber. Carbon 43:195–213CrossRef Shioyama H (2005) The production of a sheath around a stacked-cup carbon nanofiber. Carbon 43:195–213CrossRef
Zurück zum Zitat Terrones H, Hayashi T, Muñoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran K, Dorantes-Dávila J, Escudero R, Dresselhaus MS, Endo M (2001) Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Lett 343:241–250CrossRef Terrones H, Hayashi T, Muñoz-Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran K, Dorantes-Dávila J, Escudero R, Dresselhaus MS, Endo M (2001) Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Lett 343:241–250CrossRef
Zurück zum Zitat Tibbetts GG, Doll GL, Gorkiewicz DW, Moleski JJ, Perry TA, Dasch CJ, Balogh MJ (1993a) Physical properties of vapor-grown carbon fibers. Carbon 31:1039–1047CrossRef Tibbetts GG, Doll GL, Gorkiewicz DW, Moleski JJ, Perry TA, Dasch CJ, Balogh MJ (1993a) Physical properties of vapor-grown carbon fibers. Carbon 31:1039–1047CrossRef
Zurück zum Zitat Tibbetts GG, Gorkiewics DW, Alig RL (1993b) A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 31:809–814CrossRef Tibbetts GG, Gorkiewics DW, Alig RL (1993b) A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 31:809–814CrossRef
Zurück zum Zitat Tibbetts GG, Bernado CA, Gorkiewics DW, Alig RL (1994) Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32:569–576CrossRef Tibbetts GG, Bernado CA, Gorkiewics DW, Alig RL (1994) Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32:569–576CrossRef
Zurück zum Zitat Wang Yu, Santiago-Aviles JJ, Furlan R, Ramos I (2003) Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers. IEEE Trans Nanotechnol 2:39–43CrossRef Wang Yu, Santiago-Aviles JJ, Furlan R, Ramos I (2003) Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers. IEEE Trans Nanotechnol 2:39–43CrossRef
Zurück zum Zitat Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44:7757–7764CrossRef Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44:7757–7764CrossRef
Zurück zum Zitat Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44:537–562CrossRef Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44:537–562CrossRef
Metadaten
Titel
Structural transformation of vapor grown carbon nanofibers studied by HRTEM
verfasst von
Joseph G. Lawrence
Lesley M. Berhan
Arunan Nadarajah
Publikationsdatum
01.10.2008
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2008
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-007-9341-4

Weitere Artikel der Ausgabe 7/2008

Journal of Nanoparticle Research 7/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.