Skip to main content
Erschienen in: Journal of Nanoparticle Research 6/2011

01.06.2011 | Research Paper

Study of iron oxide nanoparticles in soil for remediation of arsenic

verfasst von: Heather J. Shipley, Karen E. Engates, Allison M. Guettner

Erschienen in: Journal of Nanoparticle Research | Ausgabe 6/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 μg/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 μg/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ainsworth CC, Pilou JL, Gassman PL, Van der Sluys WG (1994) Cobalt, cadmium and lead sorption on hydrous iron oxide: residence time effect. Soil Sci Soc Am 58:1615–1623CrossRef Ainsworth CC, Pilou JL, Gassman PL, Van der Sluys WG (1994) Cobalt, cadmium and lead sorption on hydrous iron oxide: residence time effect. Soil Sci Soc Am 58:1615–1623CrossRef
Zurück zum Zitat Appelo CA, Van Der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103CrossRef Appelo CA, Van Der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103CrossRef
Zurück zum Zitat Brusseau ML, Rao PSC, Jessup RE, Davidson JM (1989) Flow interruption: a method for investigating sorption non-equilibrium. J Contam Hydrol 4:223–240CrossRef Brusseau ML, Rao PSC, Jessup RE, Davidson JM (1989) Flow interruption: a method for investigating sorption non-equilibrium. J Contam Hydrol 4:223–240CrossRef
Zurück zum Zitat Cerovi L, Lefèvre G, Jaubertie A, Fédoroff M, Milonji S (2009) Deposition of hematite particles on polypropylene walls in dynamic conditions. J Colloid Interf Sci 330:284–291CrossRef Cerovi L, Lefèvre G, Jaubertie A, Fédoroff M, Milonji S (2009) Deposition of hematite particles on polypropylene walls in dynamic conditions. J Colloid Interf Sci 330:284–291CrossRef
Zurück zum Zitat Clark GL (1990) Flow rate effects on the sorption of methylated benzenes in saturated aquifer materials. Rice University, Houston, TX Clark GL (1990) Flow rate effects on the sorption of methylated benzenes in saturated aquifer materials. Rice University, Houston, TX
Zurück zum Zitat Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and use. Weinheim, New York, p 573 Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and use. Weinheim, New York, p 573
Zurück zum Zitat DeMarco MJ, SenGupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res 37:164CrossRef DeMarco MJ, SenGupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res 37:164CrossRef
Zurück zum Zitat Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic (III) sorption onton iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189CrossRef Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic (III) sorption onton iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189CrossRef
Zurück zum Zitat Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New York Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New York
Zurück zum Zitat Gao Y, Kan AT, Tomson MB (2003) Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ Sci Technol 37:5566CrossRef Gao Y, Kan AT, Tomson MB (2003) Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ Sci Technol 37:5566CrossRef
Zurück zum Zitat Genc-Fuhrman H, Tjell JC, McConchie D (2004) Adsorption of arsenic from water using activated neutralized red mud. Environ Sci Technol 38:2428CrossRef Genc-Fuhrman H, Tjell JC, McConchie D (2004) Adsorption of arsenic from water using activated neutralized red mud. Environ Sci Technol 38:2428CrossRef
Zurück zum Zitat Gimenez J, Martınez M, Pablo Jd, Rovira M, Duroc L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580CrossRef Gimenez J, Martınez M, Pablo Jd, Rovira M, Duroc L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580CrossRef
Zurück zum Zitat Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB (1998) Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions. Environ Sci Technol 32:892–902CrossRef Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB (1998) Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions. Environ Sci Technol 32:892–902CrossRef
Zurück zum Zitat Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of Arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRef Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of Arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRef
Zurück zum Zitat Kanel S, Greneche J, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRef Kanel S, Greneche J, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRef
Zurück zum Zitat Kookana RS, Naidu R, Tiller KG (1994) Sorption non-equilibrium during cadmium transport through soils. Aust J Soil Res 32:635–651CrossRef Kookana RS, Naidu R, Tiller KG (1994) Sorption non-equilibrium during cadmium transport through soils. Aust J Soil Res 32:635–651CrossRef
Zurück zum Zitat Liu W-T (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7CrossRef Liu W-T (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7CrossRef
Zurück zum Zitat Lowry G, Johnson K (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38:5208–5216CrossRef Lowry G, Johnson K (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38:5208–5216CrossRef
Zurück zum Zitat Manning BA, Hunt M, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36:5455–5461CrossRef Manning BA, Hunt M, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36:5455–5461CrossRef
Zurück zum Zitat Murali V, Aylmore LAG (1980) No-flow equilibrium and adsorption dynamics during ionic transport in soils. Nature 283:467–469CrossRef Murali V, Aylmore LAG (1980) No-flow equilibrium and adsorption dynamics during ionic transport in soils. Nature 283:467–469CrossRef
Zurück zum Zitat Nagayama M, Cohen M (1962) The anodic of oxidation of iron in neutral solution. J Electrochem Soc 109:781–790CrossRef Nagayama M, Cohen M (1962) The anodic of oxidation of iron in neutral solution. J Electrochem Soc 109:781–790CrossRef
Zurück zum Zitat Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef
Zurück zum Zitat Shipley HJ, Yean S, Kan AT, Tomson MB (2009) Effect of solid concentration, pH, IS, and Temperature on arsenic adsorption. Environ Toxicol Chem 28:509–515CrossRef Shipley HJ, Yean S, Kan AT, Tomson MB (2009) Effect of solid concentration, pH, IS, and Temperature on arsenic adsorption. Environ Toxicol Chem 28:509–515CrossRef
Zurück zum Zitat Smedley PL, Kinniburgh DG (2002) A review of the source, behavior, and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRef Smedley PL, Kinniburgh DG (2002) A review of the source, behavior, and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRef
Zurück zum Zitat Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn, vol 60. Wiley, New York, 1200pp Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn, vol 60. Wiley, New York, 1200pp
Zurück zum Zitat Tran YT, Bajracharya K, Barry DA (1998) Anomalous cadmium adsorption in flow interruption experiments. Geoderma 84:169–184CrossRef Tran YT, Bajracharya K, Barry DA (1998) Anomalous cadmium adsorption in flow interruption experiments. Geoderma 84:169–184CrossRef
Zurück zum Zitat Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48CrossRef Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48CrossRef
Zurück zum Zitat Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796CrossRef Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796CrossRef
Zurück zum Zitat Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57:2251CrossRef Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57:2251CrossRef
Zurück zum Zitat Wilson JT, Enfield CG, Dunlap WJ, Cosby RL, Foster DA, Baskin LB (1981) Transport and fate of selected organic pollutants in a sandy soil. J Environ Qual 10:501CrossRef Wilson JT, Enfield CG, Dunlap WJ, Cosby RL, Foster DA, Baskin LB (1981) Transport and fate of selected organic pollutants in a sandy soil. J Environ Qual 10:501CrossRef
Zurück zum Zitat Yalcin S, Le XC (2001) Speciation of arsenic using solid phase extraction cartridges. J Environ Monit 3:81–85CrossRef Yalcin S, Le XC (2001) Speciation of arsenic using solid phase extraction cartridges. J Environ Monit 3:81–85CrossRef
Zurück zum Zitat Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner J, Yean S, Cong L, Shipley HJ, Kan AT, Tomson MB, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967CrossRef Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner J, Yean S, Cong L, Shipley HJ, Kan AT, Tomson MB, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967CrossRef
Zurück zum Zitat Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB (2005) Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264CrossRef Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB (2005) Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264CrossRef
Zurück zum Zitat Yuan C, Lien H-L (2006) Removal of arsenate from aqueous solution using nanoscale iron particles. Water Qual Res J Canada 41:210–215 Yuan C, Lien H-L (2006) Removal of arsenate from aqueous solution using nanoscale iron particles. Water Qual Res J Canada 41:210–215
Zurück zum Zitat Zhang W (2003) Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5:323–332CrossRef Zhang W (2003) Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5:323–332CrossRef
Metadaten
Titel
Study of iron oxide nanoparticles in soil for remediation of arsenic
verfasst von
Heather J. Shipley
Karen E. Engates
Allison M. Guettner
Publikationsdatum
01.06.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 6/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-9999-x

Weitere Artikel der Ausgabe 6/2011

Journal of Nanoparticle Research 6/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.