Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2013

01.01.2013 | Research Paper

Optical responses of plasmonic gold nanoantennas through numerical simulation

verfasst von: Bedir B. Yousif, Ahmed S. Samra

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. Gold nanoparticles are the material that is mostly used experimentally, since it combines a favorable dielectric function in the red and near-IR with excellent chemical stability. So, the gold material is used to build nanoantennas in this research. The optical properties of plasmonic dimer nanoantennas are investigated in detail using the finite integration technique. The validity of this technique is verified by comparison to the exact solution generalized Mie method (GMM). The influence of the geometrical parameters (antenna length, gap dimension, and shapes) on the antenna field enhancement and spectral response is discussed. Localized surface plasmon resonances of Au (gold) dimers nanospheres, bowtie and aperture bowtie nanoantennas are modeled. The enhanced field is equivalent to a strong light spot which can lead to the resolution improvement of the microscopy and optical lithography, thus increasing the optical data storage capacity. Furthermore, the sensitivity of the antennas to index changes of the environment and substrate is investigated in detail for biosensing applications. We confirm that our approach yields an exact correspondence with GMM theory, for Au dimers nanospheres at gap dimension 5 and 10 nm but gives an approximation error of less than 1.37 % for gap dimension 1 and 2 nm with diameters approaching 80 nm. In addition, the far-field characteristics of the aperture bowtie nanoantenna such as directivity and gain are studied. The promising results of this study may have useful potential applications in near-field sample detection, optical microscopy, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York
Zurück zum Zitat Alda J, Rico-Garcia JM, Lopez-Alonso JM, Boreman G (2005) Optical antennas for nano-photonic applications. Nanotechnology 16:S230–S234CrossRef Alda J, Rico-Garcia JM, Lopez-Alonso JM, Boreman G (2005) Optical antennas for nano-photonic applications. Nanotechnology 16:S230–S234CrossRef
Zurück zum Zitat Andrey EM, Ivan SM, Arthur RD, Constant in S, Pavel B, Yuri SK (2011) An arrayed nanoantenna for broadband light emission and detection. Phys Status Solidi RRL 18:1–3 Andrey EM, Ivan SM, Arthur RD, Constant in S, Pavel B, Yuri SK (2011) An arrayed nanoantenna for broadband light emission and detection. Phys Status Solidi RRL 18:1–3
Zurück zum Zitat Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:1130021–1130024) Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:1130021–1130024)
Zurück zum Zitat Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken
Zurück zum Zitat Bek A, Jansen R, Ringler M, Mayilo S, Klar TA, Feldmann J (2008) Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett 8:485–490CrossRef Bek A, Jansen R, Ringler M, Mayilo S, Klar TA, Feldmann J (2008) Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett 8:485–490CrossRef
Zurück zum Zitat Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266–14274CrossRef Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266–14274CrossRef
Zurück zum Zitat Chen Z, Li X, Taflove A, Backman V (2006) Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks. Appl Opt 45:633–638CrossRef Chen Z, Li X, Taflove A, Backman V (2006) Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks. Appl Opt 45:633–638CrossRef
Zurück zum Zitat Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. Prog Electromagn Res PIER 32:65–87CrossRef Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. Prog Electromagn Res PIER 32:65–87CrossRef
Zurück zum Zitat Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94:4632–4642CrossRef Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94:4632–4642CrossRef
Zurück zum Zitat Danckwerts M, Novotny L (2007) Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98:0261041–0261044) Danckwerts M, Novotny L (2007) Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98:0261041–0261044)
Zurück zum Zitat Enders D, Rupp S, Kuller A, Pucci A (2006) Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO2/Si for optical biosensing: detection of the antibody-antigen reaction. Surface Sci 600:L305–L308CrossRef Enders D, Rupp S, Kuller A, Pucci A (2006) Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO2/Si for optical biosensing: detection of the antibody-antigen reaction. Surface Sci 600:L305–L308CrossRef
Zurück zum Zitat Eugen T, Ekaterina S, Laszlo S (2009) Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns. Opt Express 17:8448–8460 Eugen T, Ekaterina S, Laszlo S (2009) Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns. Opt Express 17:8448–8460
Zurück zum Zitat Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable super emitter. Phys Rev Lett 95:0174021–0174024 Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable super emitter. Phys Rev Lett 95:0174021–0174024
Zurück zum Zitat Farahani JN, Eisler HJ, Pohl DW, Pavius M, Fluckiger P, Gasser P, Hecht B (2007) Bow-tie optical antenna probes for single emitter scanning near-field optical microscopy. Nanotechnology 18:1255061–1255064) Farahani JN, Eisler HJ, Pohl DW, Pavius M, Fluckiger P, Gasser P, Hecht B (2007) Bow-tie optical antenna probes for single emitter scanning near-field optical microscopy. Nanotechnology 18:1255061–1255064)
Zurück zum Zitat Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097 Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097
Zurück zum Zitat Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible. Nano Lett 4:957–961CrossRef Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible. Nano Lett 4:957–961CrossRef
Zurück zum Zitat Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 124:061101-1–061101-4 Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 124:061101-1–061101-4
Zurück zum Zitat Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Resonant field enhancements from metal nanoparticle arrays. Nano Lett 4:153–158CrossRef Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Resonant field enhancements from metal nanoparticle arrays. Nano Lett 4:153–158CrossRef
Zurück zum Zitat Gonzalez FJ, Ilic B, Alda J, Boreman GD (2005) Antenna-coupled infrared detectors for imaging applications. IEEE J Sel Top Quantum Electron 11:117–120CrossRef Gonzalez FJ, Ilic B, Alda J, Boreman GD (2005) Antenna-coupled infrared detectors for imaging applications. IEEE J Sel Top Quantum Electron 11:117–120CrossRef
Zurück zum Zitat Grober RD, Schoelkopf RJ, Prober DE (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70:1354–1356CrossRef Grober RD, Schoelkopf RJ, Prober DE (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70:1354–1356CrossRef
Zurück zum Zitat Hecht B, Muhlschlegel P, Farahani JN, Eisler HJ, Pohl DW, Martin OJF, Biagioni P (2006) Prospects of resonant optical antennas for nano-analysis. Chimia 60:A765–A769CrossRef Hecht B, Muhlschlegel P, Farahani JN, Eisler HJ, Pohl DW, Martin OJF, Biagioni P (2006) Prospects of resonant optical antennas for nano-analysis. Chimia 60:A765–A769CrossRef
Zurück zum Zitat Hoffman J, Hafner C, Leidenberger P, Hesselbarth J, Burger S (2009) Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas Proc SPIE 7390:73900J–73900J-11 Hoffman J, Hafner C, Leidenberger P, Hesselbarth J, Burger S (2009) Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas Proc SPIE 7390:73900J–73900J-11
Zurück zum Zitat Huang XH, Sayed IHEl-, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597CrossRef Huang XH, Sayed IHEl-, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597CrossRef
Zurück zum Zitat Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York
Zurück zum Zitat Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef
Zurück zum Zitat Kawata S, Motoichi O, Masahiro A (2001) Near-field optics and surface plasmon polaritons, 1st edn. Springer, BerlinCrossRef Kawata S, Motoichi O, Masahiro A (2001) Near-field optics and surface plasmon polaritons, 1st edn. Springer, BerlinCrossRef
Zurück zum Zitat Kelvin JA, Ooi PB, Ming XG, Lay KA (2011) Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Opt Express 19:17075–17085. doi:10.1364/OE.19.017075 CrossRef Kelvin JA, Ooi PB, Ming XG, Lay KA (2011) Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Opt Express 19:17075–17085. doi:10.​1364/​OE.​19.​017075 CrossRef
Zurück zum Zitat Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRef Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRef
Zurück zum Zitat Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976 Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976
Zurück zum Zitat Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin
Zurück zum Zitat Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 96:017402-1–017402-4 Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 96:017402-1–017402-4
Zurück zum Zitat Lei L, Bin W, Xuewei C, Xiaoxuan X (2012) Comparison investigation of near- and far-field properties for plasmon resonance of silver nanosphere dimers. Photonics Nanostructures Fundam Appl 10:16–24 Lei L, Bin W, Xuewei C, Xiaoxuan X (2012) Comparison investigation of near- and far-field properties for plasmon resonance of silver nanosphere dimers. Photonics Nanostructures Fundam Appl 10:16–24
Zurück zum Zitat Li CH, Kattawar GW, Zhai PW, Yang P (2005) Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave. Opt Exp 13:4554–4559CrossRef Li CH, Kattawar GW, Zhai PW, Yang P (2005) Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave. Opt Exp 13:4554–4559CrossRef
Zurück zum Zitat Maier SA (2007) Plasmonics—fundamentals and applications. Springer, Berlin Maier SA (2007) Plasmonics—fundamentals and applications. Springer, Berlin
Zurück zum Zitat Ming YW, Le-Wei L, Bo L (2010) Gold bowtie shaped aperture nanoantenna: wideband near-field resonance and far-field radiation. IEEE Trans Mag 46:1918–1921CrossRef Ming YW, Le-Wei L, Bo L (2010) Gold bowtie shaped aperture nanoantenna: wideband near-field resonance and far-field radiation. IEEE Trans Mag 46:1918–1921CrossRef
Zurück zum Zitat Mohammadi A, Sandoghdar V, Agio M (2009) Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. J Comput Theor Nanosci 6:2024–2030CrossRef Mohammadi A, Sandoghdar V, Agio M (2009) Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. J Comput Theor Nanosci 6:2024–2030CrossRef
Zurück zum Zitat Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609CrossRef Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609CrossRef
Zurück zum Zitat Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRef Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRef
Zurück zum Zitat Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802-1–266802-4 Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802-1–266802-4
Zurück zum Zitat Novotny L, Hecht B (2006) Principles of nano-optics, 1st edn. Cambridge University Press, CambridgeCrossRef Novotny L, Hecht B (2006) Principles of nano-optics, 1st edn. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Palik E (1985) Handbook of optical constants of solids, vol 1. Academic, New York Palik E (1985) Handbook of optical constants of solids, vol 1. Academic, New York
Zurück zum Zitat Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002CrossRef Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002CrossRef
Zurück zum Zitat Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625CrossRef Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625CrossRef
Zurück zum Zitat Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402-1–017402-4 Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402-1–017402-4
Zurück zum Zitat Shi X, Hesselink L, Thornton RL (2003) Ultrahigh light transmission through a C-shaped nanoaperture. Opt Lett 28:1320–1322CrossRef Shi X, Hesselink L, Thornton RL (2003) Ultrahigh light transmission through a C-shaped nanoaperture. Opt Lett 28:1320–1322CrossRef
Zurück zum Zitat Steven LJ, Ravikant S, Niloy C (2010) Rapid spectral analysis for spectral imaging. OSA 1:157–164 Steven LJ, Ravikant S, Niloy C (2010) Rapid spectral analysis for spectral imaging. OSA 1:157–164
Zurück zum Zitat Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys Rev B 72:165409-1–165409-6 Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys Rev B 72:165409-1–165409-6
Zurück zum Zitat Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner WE (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett 6:355–360CrossRef Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner WE (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett 6:355–360CrossRef
Zurück zum Zitat Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRef Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRef
Zurück zum Zitat Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007a) Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33CrossRef Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007a) Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33CrossRef
Zurück zum Zitat Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007b) A monopole antenna at optical frequencies: single-molecule near-field measurements. IEEE Trans Antennas Propag 55:3010–3017CrossRef Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007b) A monopole antenna at optical frequencies: single-molecule near-field measurements. IEEE Trans Antennas Propag 55:3010–3017CrossRef
Zurück zum Zitat Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16:16858–16866 Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16:16858–16866
Zurück zum Zitat Taminau TH, Stefani FD, Segerink FB, Van Hulst NF (2008) Optical antennas direct single-molecule emission. Nat Photonics 2:234–237CrossRef Taminau TH, Stefani FD, Segerink FB, Van Hulst NF (2008) Optical antennas direct single-molecule emission. Nat Photonics 2:234–237CrossRef
Zurück zum Zitat Tonti E (2001) Finite formulation of the electromagnetic field. Prog Electromagn Res PIER 32:1–44CrossRef Tonti E (2001) Finite formulation of the electromagnetic field. Prog Electromagn Res PIER 32:1–44CrossRef
Zurück zum Zitat Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6:361–364CrossRef Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6:361–364CrossRef
Zurück zum Zitat Weiland T (1977) A discretization method for the solution of Maxwell’s equations for six-component fields. Electromagn Commun 31:116–120 Weiland T (1977) A discretization method for the solution of Maxwell’s equations for six-component fields. Electromagn Commun 31:116–120
Zurück zum Zitat West PR, Ishii S, Naik GV, Emani NK, Shalev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photon Rev 4:795CrossRef West PR, Ishii S, Naik GV, Emani NK, Shalev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photon Rev 4:795CrossRef
Zurück zum Zitat Xu H, Bjerneld EJ, Kall M, Brjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys Rev Lett 83:4357CrossRef Xu H, Bjerneld EJ, Kall M, Brjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys Rev Lett 83:4357CrossRef
Zurück zum Zitat Zhang W, Cui X, Yeo B-S, Schmid T, Hafner C, Zenobi R (2007) Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. Nano Lett 7:1401–1405CrossRef Zhang W, Cui X, Yeo B-S, Schmid T, Hafner C, Zenobi R (2007) Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. Nano Lett 7:1401–1405CrossRef
Metadaten
Titel
Optical responses of plasmonic gold nanoantennas through numerical simulation
verfasst von
Bedir B. Yousif
Ahmed S. Samra
Publikationsdatum
01.01.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1341-3

Weitere Artikel der Ausgabe 1/2013

Journal of Nanoparticle Research 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.