Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2013

01.11.2013 | Research Paper

A model to estimate the size of nanoparticle agglomerates in gas−solid fluidized beds

verfasst von: Lilian de Martín, J. Ruud van Ommen

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The estimation of nanoparticle agglomerates’ size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1–0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ackler HD, French RH, Chiang YM (1996) Comparisons of hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. J Colloid Interface Sci 179(2):460–469CrossRef Ackler HD, French RH, Chiang YM (1996) Comparisons of hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. J Colloid Interface Sci 179(2):460–469CrossRef
Zurück zum Zitat Castellanos A (2005) The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv Phys 54(4):263–376CrossRef Castellanos A (2005) The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv Phys 54(4):263–376CrossRef
Zurück zum Zitat Castellanos A, Valverde JM, Quintanilla MAS (2001) Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys Rev E 64:041,304CrossRef Castellanos A, Valverde JM, Quintanilla MAS (2001) Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys Rev E 64:041,304CrossRef
Zurück zum Zitat Chaouki J, Chavarie C, Klvana D, Pajonk G (1985) Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels. Powder Technol 43(2):117–125CrossRef Chaouki J, Chavarie C, Klvana D, Pajonk G (1985) Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels. Powder Technol 43(2):117–125CrossRef
Zurück zum Zitat de Martín L, Bouwman WG, van Ommen JR (2012) Two-level hierarchical structure in nano-powder agglomerates in gas media. In: Bulleting of the Americal Physical Society, vol 57 de Martín L, Bouwman WG, van Ommen JR (2012) Two-level hierarchical structure in nano-powder agglomerates in gas media. In: Bulleting of the Americal Physical Society, vol 57
Zurück zum Zitat Espin MJ, Valverde JM, Quintanilla MAS, Castellanos A (2009) Electromechanics of fluidized beds of nanoparticles. Phys Rev E 79:011,304CrossRef Espin MJ, Valverde JM, Quintanilla MAS, Castellanos A (2009) Electromechanics of fluidized beds of nanoparticles. Phys Rev E 79:011,304CrossRef
Zurück zum Zitat Forsyth AJ, Rhodes MJ (2000) A simple model incorporating the effects of deformation and asperities into the van der waals force for macroscopic spherical solid particles. J Colloid Interface Sci 223(1):133–138CrossRef Forsyth AJ, Rhodes MJ (2000) A simple model incorporating the effects of deformation and asperities into the van der waals force for macroscopic spherical solid particles. J Colloid Interface Sci 223(1):133–138CrossRef
Zurück zum Zitat French RH, Cannon RM, DeNoyer LK, Chiang YM (1994) Full spectral calculation of non-retarded hamaker constants for ceramic systems from interband transition strengths. Solid State Ion 75:13–33CrossRef French RH, Cannon RM, DeNoyer LK, Chiang YM (1994) Full spectral calculation of non-retarded hamaker constants for ceramic systems from interband transition strengths. Solid State Ion 75:13–33CrossRef
Zurück zum Zitat Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, USA Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, USA
Zurück zum Zitat Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, London Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, London
Zurück zum Zitat Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J (2006) Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci 304(2):524–529CrossRef Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J (2006) Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci 304(2):524–529CrossRef
Zurück zum Zitat Kim HY, Sofo JO, Velegol D, Cole MW, Lucas AA (2007) Van der waals dispersion forces between dielectric nanoclusters. Langmuir 23(4):1735–1740CrossRef Kim HY, Sofo JO, Velegol D, Cole MW, Lucas AA (2007) Van der waals dispersion forces between dielectric nanoclusters. Langmuir 23(4):1735–1740CrossRef
Zurück zum Zitat Krupp H (1967) Particle adhesion, theory and experiment. Adv Colloid Interface Sci 1:111–239CrossRef Krupp H (1967) Particle adhesion, theory and experiment. Adv Colloid Interface Sci 1:111–239CrossRef
Zurück zum Zitat Li Q, Rudolph V, Peukert W (2006) London-van der waals adhesiveness of rough particles. Powder Technol 161(3):248–255CrossRef Li Q, Rudolph V, Peukert W (2006) London-van der waals adhesiveness of rough particles. Powder Technol 161(3):248–255CrossRef
Zurück zum Zitat Matsuda S, Hatano H, Tsutsumi A (2001) Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem Eng J 82(13):183–188CrossRef Matsuda S, Hatano H, Tsutsumi A (2001) Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem Eng J 82(13):183–188CrossRef
Zurück zum Zitat Matsuda S, Hatano H, Muramoto T, Tsutsumi A (2004) Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE J 50(11):2763–2771CrossRef Matsuda S, Hatano H, Muramoto T, Tsutsumi A (2004) Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE J 50(11):2763–2771CrossRef
Zurück zum Zitat Nam CH, Pfeffer R, Dave RN, Sundaresan S (2004) Aerated vibrofluidization of silica nanoparticles. AIChE J 50(8):1776–1785CrossRef Nam CH, Pfeffer R, Dave RN, Sundaresan S (2004) Aerated vibrofluidization of silica nanoparticles. AIChE J 50(8):1776–1785CrossRef
Zurück zum Zitat Quintanilla MAS, Valverde JM, Espin MJ, Castellanos A (2012) Electrofluidization of silica nanoparticle agglomerates. Ind Eng Chem Res 51(1):531–538CrossRef Quintanilla MAS, Valverde JM, Espin MJ, Castellanos A (2012) Electrofluidization of silica nanoparticle agglomerates. Ind Eng Chem Res 51(1):531–538CrossRef
Zurück zum Zitat Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Interface Sci 232(1):10–16CrossRef Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Interface Sci 232(1):10–16CrossRef
Zurück zum Zitat Shabanian J, Jafari R, Chaouki J (2012) Fluidization of ultrafine powders. Int Rev Chem Eng 4(1):16–50 Shabanian J, Jafari R, Chaouki J (2012) Fluidization of ultrafine powders. Int Rev Chem Eng 4(1):16–50
Zurück zum Zitat Tahmasebpoor M, de Martín L, Talebi M, Mostoufi N, van Ommen JR (2013) The role of the hydrogen bond in dense nanoparticle-gas suspensions. Phys Chem Chem Phys 15:5788–5793CrossRef Tahmasebpoor M, de Martín L, Talebi M, Mostoufi N, van Ommen JR (2013) The role of the hydrogen bond in dense nanoparticle-gas suspensions. Phys Chem Chem Phys 15:5788–5793CrossRef
Zurück zum Zitat Valverde JM, Castellanos A (2006) Fluidization of nanoparticles: a modified Richardson–Zaki law. AIChE J 52(2):838–842CrossRef Valverde JM, Castellanos A (2006) Fluidization of nanoparticles: a modified Richardson–Zaki law. AIChE J 52(2):838–842CrossRef
Zurück zum Zitat Valverde JM, Castellanos A (2008a) Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chem Eng J 140(13):296–304CrossRef Valverde JM, Castellanos A (2008a) Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chem Eng J 140(13):296–304CrossRef
Zurück zum Zitat Valverde JM, Castellanos A (2008b) A modified Richardson–Zaki equation for fluidization of geldart B magnetic particles. Powder Technol 181(3):347–350CrossRef Valverde JM, Castellanos A (2008b) A modified Richardson–Zaki equation for fluidization of geldart B magnetic particles. Powder Technol 181(3):347–350CrossRef
Zurück zum Zitat van Ommen JR, Valverde JM, Pfeffer R (2012) Fluidization of nanopowders: a review. J Nanopart Res 14(3):737–766CrossRef van Ommen JR, Valverde JM, Pfeffer R (2012) Fluidization of nanopowders: a review. J Nanopart Res 14(3):737–766CrossRef
Zurück zum Zitat Wang XS, Palero V, Soria J, Rhodes MJ (2006a) Laser-based planar imaging of nano-particle fluidization: Part I. Determination of aggregate size and shape. Chem Eng Sci 61(16):5476–5486CrossRef Wang XS, Palero V, Soria J, Rhodes MJ (2006a) Laser-based planar imaging of nano-particle fluidization: Part I. Determination of aggregate size and shape. Chem Eng Sci 61(16):5476–5486CrossRef
Zurück zum Zitat Wang XS, Palero V, Soria J, Rhodes MJ (2006b) Laser-based planar imaging of nano-particle fluidization: Part II. Mechanistic analysis of nanoparticle aggregation. Chem Eng Sci 61(24):8040–8049CrossRef Wang XS, Palero V, Soria J, Rhodes MJ (2006b) Laser-based planar imaging of nano-particle fluidization: Part II. Mechanistic analysis of nanoparticle aggregation. Chem Eng Sci 61(24):8040–8049CrossRef
Zurück zum Zitat Wu MK, Friedlander SK (1993) Note on the power law equation for fractal-like aerosol agglomerates. J Colloid Interface Sci 159(1):246–248CrossRef Wu MK, Friedlander SK (1993) Note on the power law equation for fractal-like aerosol agglomerates. J Colloid Interface Sci 159(1):246–248CrossRef
Zurück zum Zitat Yao W, Guangsheng G, Fei W, Jun W (2002) Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol 124(12):152–159CrossRef Yao W, Guangsheng G, Fei W, Jun W (2002) Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol 124(12):152–159CrossRef
Zurück zum Zitat Zhou L, Zhang F, Zhou T, Kage H, Mawatari Y (2013) A model for estimating agglomerate sizes of non-magnetic nanoparticles in magnetic fluidized beds. Korean J Chem Eng 30(2):501–507CrossRef Zhou L, Zhang F, Zhou T, Kage H, Mawatari Y (2013) A model for estimating agglomerate sizes of non-magnetic nanoparticles in magnetic fluidized beds. Korean J Chem Eng 30(2):501–507CrossRef
Metadaten
Titel
A model to estimate the size of nanoparticle agglomerates in gas−solid fluidized beds
verfasst von
Lilian de Martín
J. Ruud van Ommen
Publikationsdatum
01.11.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-2055-x

Weitere Artikel der Ausgabe 11/2013

Journal of Nanoparticle Research 11/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.