Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2014

01.01.2014 | Research Paper

Ca–alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies

verfasst von: Achintya N. Bezbaruah, Harjyoti Kalita, Talal Almeelbi, Christopher L. Capecchi, Donna L. Jacob, Angel G. Ugrinov, Scott A. Payne

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of nanoscale zero-valent iron (NZVI, diameter 10–90 nm with an average value of 35 nm) entrapped in calcium (Ca)–alginate beads shows great promise for aqueous arsenic treatment. This research evaluated Ca–alginate-entrapped NZVI as an advanced treatment technique for aqueous arsenic removal. Arsenic is a serious threat to human health and millions of people are affected by arsenic contamination in various parts of the world including the USA. In bench scale batch studies with initial As(V) concentrations of 1–10 mg L−1, ~85–100 % arsenic removal was achieved within 2 h. While the reaction kinetics differ between bare and entrapped NZVI, the overall reductions of arsenic are comparable. Surface area-normalized arsenic reduction reaction rate constants (k sa) for bare and entrapped NZVI were 3.40–5.96 × 10−3 and 3.92–4.43 × 10−3 L m−2 min−1, respectively. The entrapped NZVI removed ~100 μg L−1 As(V) to below detection limit within 2 h and groundwater with 53 μg L−1 As(V) was remediated to below instrument detection limit (10 μg L−1) within 1 h. The presence of Na+, Ca2+, Cl, and \({\rm HCO}_{3}^{ - }\)did not affect arsenic removal by entrapped NZVI and there was no leaching of iron from the beads. X-ray diffraction and Fourier transform infrared spectroscopic techniques have been used to understand the mechanism of arsenic removal by the entrapped NZVI. Ca–alginate polymer is an excellent choice as an entrapment medium as it is non-toxic and has little solubility in water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akram Z, Jalali S, Shami SA, Ahmad L, Batool S, Kalsoom O (2010) Adverse effects of arsenic exposure on uterine function and structure in female rat. Exp Toxicol Pathol 62:451–459CrossRef Akram Z, Jalali S, Shami SA, Ahmad L, Batool S, Kalsoom O (2010) Adverse effects of arsenic exposure on uterine function and structure in female rat. Exp Toxicol Pathol 62:451–459CrossRef
Zurück zum Zitat Aksu G, Retli GE, Kutsal T (1998) A comparative study of copper(II) biosorption on Ca–alginate, agarose and immobilized C. vulgaris in packed-bed column. Process Biochem 33:393–400CrossRef Aksu G, Retli GE, Kutsal T (1998) A comparative study of copper(II) biosorption on Ca–alginate, agarose and immobilized C. vulgaris in packed-bed column. Process Biochem 33:393–400CrossRef
Zurück zum Zitat Almeelbi T, Bezbaruah AN (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14:1–14CrossRef Almeelbi T, Bezbaruah AN (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14:1–14CrossRef
Zurück zum Zitat Bang S, Johnson MD, Korfiatis GP, Meng X (2005) Chemical reactions between arsenic and zero-valent iron in water. Water Res 39:763–770CrossRef Bang S, Johnson MD, Korfiatis GP, Meng X (2005) Chemical reactions between arsenic and zero-valent iron in water. Water Res 39:763–770CrossRef
Zurück zum Zitat Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermundez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343CrossRef Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermundez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343CrossRef
Zurück zum Zitat Bezbaruah AN, Shanbhougue SS, Simsek S, Khan E (2011) Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13:6673–6681CrossRef Bezbaruah AN, Shanbhougue SS, Simsek S, Khan E (2011) Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13:6673–6681CrossRef
Zurück zum Zitat Brachkova MI, Duarte MA, Pinto JF (2010) Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads. Eur J Pharm Sci 41:589–596CrossRef Brachkova MI, Duarte MA, Pinto JF (2010) Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads. Eur J Pharm Sci 41:589–596CrossRef
Zurück zum Zitat Cwiertny DM, Roberts AL (2005) On the nonlinear relationship between k(obs) and reductant mass loading in iron batch systems. Environ Sci Technol 39:8948–8957CrossRef Cwiertny DM, Roberts AL (2005) On the nonlinear relationship between k(obs) and reductant mass loading in iron batch systems. Environ Sci Technol 39:8948–8957CrossRef
Zurück zum Zitat Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Miner 88:247–250 Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Miner 88:247–250
Zurück zum Zitat Farrell J, Wang J, O’Day P, Conklin M (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent media. Environ Sci Technol 35:2026–2032CrossRef Farrell J, Wang J, O’Day P, Conklin M (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent media. Environ Sci Technol 35:2026–2032CrossRef
Zurück zum Zitat Han YS, Gallegos TJ, Demond AH, Hayes KF (2011) FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers. Water Res 45:593–604CrossRef Han YS, Gallegos TJ, Demond AH, Hayes KF (2011) FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers. Water Res 45:593–604CrossRef
Zurück zum Zitat Hill CB, Khan E (2008) A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant. Water Air Soil Pollut 195:23–33CrossRef Hill CB, Khan E (2008) A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant. Water Air Soil Pollut 195:23–33CrossRef
Zurück zum Zitat Jain A, Sharma VK, Mbuya OS (2009) Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions. J Hazard Mater 169:339–344CrossRef Jain A, Sharma VK, Mbuya OS (2009) Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions. J Hazard Mater 169:339–344CrossRef
Zurück zum Zitat Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30:2634–2640CrossRef Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30:2634–2640CrossRef
Zurück zum Zitat Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRef Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRef
Zurück zum Zitat Kanel SR, Greneche JM, Heechul C (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRef Kanel SR, Greneche JM, Heechul C (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRef
Zurück zum Zitat Kim JS, Shea PJ, Yang JE (2007) Halide salts accelerate degradation of high explosives by zerovalent iron. Environ Pollut 147:634–641CrossRef Kim JS, Shea PJ, Yang JE (2007) Halide salts accelerate degradation of high explosives by zerovalent iron. Environ Pollut 147:634–641CrossRef
Zurück zum Zitat Kim H, Hong HJ, Jung J, Kim SH, Yang JW (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176:1038–1043CrossRef Kim H, Hong HJ, Jung J, Kim SH, Yang JW (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176:1038–1043CrossRef
Zurück zum Zitat Krajangpan S, Kalita H, Chisholm BJ, Bezbaruah AN (2012) Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: dispersibility and contaminant treatability. Environ Sci Technol 46:10130–10136 Krajangpan S, Kalita H, Chisholm BJ, Bezbaruah AN (2012) Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: dispersibility and contaminant treatability. Environ Sci Technol 46:10130–10136
Zurück zum Zitat Li L, Fan M, Brown RC, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang Z (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRef Li L, Fan M, Brown RC, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang Z (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRef
Zurück zum Zitat Lisabeth LD, Hyeong AJ, Chen JJ, Shawnita SJ, Burke JF, Meliker JR (2010) Arsenic in drinking water and stroke hospitalizations in Michigan. Stroke 41:2499–2504CrossRef Lisabeth LD, Hyeong AJ, Chen JJ, Shawnita SJ, Burke JF, Meliker JR (2010) Arsenic in drinking water and stroke hospitalizations in Michigan. Stroke 41:2499–2504CrossRef
Zurück zum Zitat Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRef Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRef
Zurück zum Zitat Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRef Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRef
Zurück zum Zitat Marshall G, Ferreccio C, Yuan Y, Michael NB, Steinmaus C, Selvin S, Liaw J, Smith HA (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928CrossRef Marshall G, Ferreccio C, Yuan Y, Michael NB, Steinmaus C, Selvin S, Liaw J, Smith HA (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928CrossRef
Zurück zum Zitat Martin JE, Herzing AA, Yan W, Li X, Koel BE, Kiely CJ, Zhang W (2008) Determination of the oxide thickness in core–shell zerovalent iron nanoparticles. Langmuir 24:4329–4334CrossRef Martin JE, Herzing AA, Yan W, Li X, Koel BE, Kiely CJ, Zhang W (2008) Determination of the oxide thickness in core–shell zerovalent iron nanoparticles. Langmuir 24:4329–4334CrossRef
Zurück zum Zitat Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053CrossRef Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053CrossRef
Zurück zum Zitat Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRef Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRef
Zurück zum Zitat Moraci N, Calabro PS (2010) Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J Environ Manag 91:2336–2341CrossRef Moraci N, Calabro PS (2010) Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J Environ Manag 91:2336–2341CrossRef
Zurück zum Zitat Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (“Aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRef Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (“Aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRef
Zurück zum Zitat Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. J Phys Chem C 113:14591–14594CrossRef Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. J Phys Chem C 113:14591–14594CrossRef
Zurück zum Zitat Roy D, Goulet J, Leduy A (1987) Continuous production of lactic-acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J Dairy Sci 70:506–513CrossRef Roy D, Goulet J, Leduy A (1987) Continuous production of lactic-acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J Dairy Sci 70:506–513CrossRef
Zurück zum Zitat Shiber GJ (2005) Arsenic in domestic well water and health in Central Appalachia, USA. Water Air Soil Pollut 160:327–341CrossRef Shiber GJ (2005) Arsenic in domestic well water and health in Central Appalachia, USA. Water Air Soil Pollut 160:327–341CrossRef
Zurück zum Zitat Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492CrossRef Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492CrossRef
Zurück zum Zitat Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27:227–232CrossRef Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27:227–232CrossRef
Zurück zum Zitat United States Environmental Protection Agency (USEPA, 2001) National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring: delay of effective date. Fed Regist 66:28342–28350 United States Environmental Protection Agency (USEPA, 2001) National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring: delay of effective date. Fed Regist 66:28342–28350
Zurück zum Zitat United States Environmental Protection Agency (USEPA, 2004) Capital costs of arsenic removal technologies U.S. EPA arsenic removal technology demonstration program round 1 (by Chen ASC, Wang L, Oxenham JL, Condit WE). EPA/600/R-04/201, Cincinnati United States Environmental Protection Agency (USEPA, 2004) Capital costs of arsenic removal technologies U.S. EPA arsenic removal technology demonstration program round 1 (by Chen ASC, Wang L, Oxenham JL, Condit WE). EPA/600/R-04/201, Cincinnati
Zurück zum Zitat Wan J, Klein J, Simon S, Joulian C, Dictor MC, Deluchat V, Dagot C (2010) AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand. Water Res 44:5098–5108CrossRef Wan J, Klein J, Simon S, Joulian C, Dictor MC, Deluchat V, Dagot C (2010) AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand. Water Res 44:5098–5108CrossRef
Zurück zum Zitat Yan W, Ramos MAV, Koel BE, Zhang WX (2010) Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core–shell structure. Chem Commun 46:6995–6997CrossRef Yan W, Ramos MAV, Koel BE, Zhang WX (2010) Multi-tiered distributions of arsenic in iron nanoparticles: observation of dual redox functionality enabled by a core–shell structure. Chem Commun 46:6995–6997CrossRef
Metadaten
Titel
Ca–alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies
verfasst von
Achintya N. Bezbaruah
Harjyoti Kalita
Talal Almeelbi
Christopher L. Capecchi
Donna L. Jacob
Angel G. Ugrinov
Scott A. Payne
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-2175-3

Weitere Artikel der Ausgabe 1/2014

Journal of Nanoparticle Research 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.