Skip to main content
Erschienen in: Journal of Nanoparticle Research 12/2014

01.12.2014 | Research Paper

Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

verfasst von: Mahboobeh Hadadian, Elaheh K. Goharshadi, Abbas Youssefi

Erschienen in: Journal of Nanoparticle Research | Ausgabe 12/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO–ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s−1. Thermal conductivity enhancement of 30 % was obtained for GO–ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322:3895–3901. doi:10.1016/j.jmmm.2010.08.016 CrossRef Abareshi M, Goharshadi EK, Mojtaba Zebarjad S, Khandan Fadafan H, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322:3895–3901. doi:10.​1016/​j.​jmmm.​2010.​08.​016 CrossRef
Zurück zum Zitat Acik M, Chabal YJ (2012) A review on reducing graphene oxide for band gap engineering. J Mater Sci Res 2:101 Acik M, Chabal YJ (2012) A review on reducing graphene oxide for band gap engineering. J Mater Sci Res 2:101
Zurück zum Zitat Amato G (1991) A new approach in the optical characterization of amorphous hydrogenated silicon-carbon alloys. Phys Status Solidi (b) 165:623–634CrossRef Amato G (1991) A new approach in the optical characterization of amorphous hydrogenated silicon-carbon alloys. Phys Status Solidi (b) 165:623–634CrossRef
Zurück zum Zitat Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2014) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25:801–810. doi:10.1016/j.apt.2013.11.015 CrossRef Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2014) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25:801–810. doi:10.​1016/​j.​apt.​2013.​11.​015 CrossRef
Zurück zum Zitat Brodie B (1860) Sur le poids atomique du graphite. Ann de chim et de phys 59:466–472 Brodie B (1860) Sur le poids atomique du graphite. Ann de chim et de phys 59:466–472
Zurück zum Zitat Cancado L et al (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cancado L et al (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
Zurück zum Zitat Carrique F, Ruiz-Reina E (2009) Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination. J Phys Chem B 113:10261–10270CrossRef Carrique F, Ruiz-Reina E (2009) Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination. J Phys Chem B 113:10261–10270CrossRef
Zurück zum Zitat Chen L, Xie H (2009) Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A 352:136–140CrossRef Chen L, Xie H (2009) Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A 352:136–140CrossRef
Zurück zum Zitat Chen S, Zhu J, Huang H, Zeng G, Nie F, Wang X (2010) Facile solvothermal synthesis of graphene–MnOOH nanocomposites. J Solid State Chem 183:2552–2557CrossRef Chen S, Zhu J, Huang H, Zeng G, Nie F, Wang X (2010) Facile solvothermal synthesis of graphene–MnOOH nanocomposites. J Solid State Chem 183:2552–2557CrossRef
Zurück zum Zitat Dimiev AM, Alemany LB, Tour JM (2012) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588. doi:10.1021/nn3047378 CrossRef Dimiev AM, Alemany LB, Tour JM (2012) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588. doi:10.​1021/​nn3047378 CrossRef
Zurück zum Zitat Dong M, Shen LP, Wang H, Wang HB, Miao J (2013) Investigation on the electrical conductivity of transformer oil-Based AlN nanofluid. J Nano Mater 2013:7. doi:10.1155/2013/842963 Dong M, Shen LP, Wang H, Wang HB, Miao J (2013) Investigation on the electrical conductivity of transformer oil-Based AlN nanofluid. J Nano Mater 2013:7. doi:10.​1155/​2013/​842963
Zurück zum Zitat Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330CrossRef Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330CrossRef
Zurück zum Zitat Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C (2008) Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. doi:10.1063/1.2908229 Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C (2008) Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. doi:10.​1063/​1.​2908229
Zurück zum Zitat Goharshadi EK, Azizi-Toupkanloo H (2013b) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101CrossRef Goharshadi EK, Azizi-Toupkanloo H (2013b) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101CrossRef
Zurück zum Zitat Goharshadi EK, Ahmadzadeh H, Samiee S, Hadadian M (2013) Nanofluids for heat transfer enhancement–A review. Phys Chem Res 1:1–33 Goharshadi EK, Ahmadzadeh H, Samiee S, Hadadian M (2013) Nanofluids for heat transfer enhancement–A review. Phys Chem Res 1:1–33
Zurück zum Zitat Goncalves G, Marques PA, Granadeiro CM, Nogueira HI, Singh M, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802CrossRef Goncalves G, Marques PA, Granadeiro CM, Nogueira HI, Singh M, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802CrossRef
Zurück zum Zitat Hunter RJ (1981) Zeta potential in colloid science: principles and applications, vol 125. Academic press, London Hunter RJ (1981) Zeta potential in colloid science: principles and applications, vol 125. Academic press, London
Zurück zum Zitat Jung I et al (2009) Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J Phys Chem C 113:18480–18486. doi:10.1021/jp904396j CrossRef Jung I et al (2009) Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J Phys Chem C 113:18480–18486. doi:10.​1021/​jp904396j CrossRef
Zurück zum Zitat Kang D-W, Shin H-S (2012) Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett 13:39–43CrossRef Kang D-W, Shin H-S (2012) Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett 13:39–43CrossRef
Zurück zum Zitat Kolbe J, Arp A, Calderone F, Meyer EM, Meyer W, Schaefer H, Stuve M (2007) Inkjettable conductive adhesive for use in microelectronics and microsystems technology. Microelectron Reliab 47:331–334CrossRef Kolbe J, Arp A, Calderone F, Meyer EM, Meyer W, Schaefer H, Stuve M (2007) Inkjettable conductive adhesive for use in microelectronics and microsystems technology. Microelectron Reliab 47:331–334CrossRef
Zurück zum Zitat Kole M, Dey T (2010) Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D 43:315501CrossRef Kole M, Dey T (2010) Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D 43:315501CrossRef
Zurück zum Zitat Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys. doi:10.1063/1.4793581 Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys. doi:10.​1063/​1.​4793581
Zurück zum Zitat Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49CrossRef Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49CrossRef
Zurück zum Zitat Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC (2014) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem 6:151–158. doi:10.1038/nchem.1820 CrossRef Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC (2014) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem 6:151–158. doi:10.​1038/​nchem.​1820 CrossRef
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem b 102:4477–4482CrossRef Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem b 102:4477–4482CrossRef
Zurück zum Zitat Li H, Zhao Q, Li X, Zhu Z, Tade M, Liu S (2013) Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite. J Nanopart Res 15:1–11. doi:10.1007/s11051-013-1670-x Li H, Zhao Q, Li X, Zhu Z, Tade M, Liu S (2013) Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite. J Nanopart Res 15:1–11. doi:10.​1007/​s11051-013-1670-x
Zurück zum Zitat Lide DR (2000) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton Lide DR (2000) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton
Zurück zum Zitat Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024CrossRef Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024CrossRef
Zurück zum Zitat Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon S-H (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102. doi:10.1021/la102425a CrossRef Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon S-H (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102. doi:10.​1021/​la102425a CrossRef
Zurück zum Zitat Maxwell JC (1904) A treatise on electricity and magnetism vol 1, 3rd edn. Clarendon, Oxford Maxwell JC (1904) A treatise on electricity and magnetism vol 1, 3rd edn. Clarendon, Oxford
Zurück zum Zitat Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNBM, Metselaar HSC (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9:1–12CrossRef Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MNBM, Metselaar HSC (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9:1–12CrossRef
Zurück zum Zitat Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372CrossRef Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372CrossRef
Zurück zum Zitat Moosavi M, Goharshadi EK, Youssefi A (2010) Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow 31:599–605CrossRef Moosavi M, Goharshadi EK, Youssefi A (2010) Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow 31:599–605CrossRef
Zurück zum Zitat Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692. doi:10.1063/1.365209 CrossRef Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692. doi:10.​1063/​1.​365209 CrossRef
Zurück zum Zitat Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009) Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys Rev B 79:155413CrossRef Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009) Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys Rev B 79:155413CrossRef
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nano 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nano 4:217–224CrossRef
Zurück zum Zitat Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. PCCP 9:1276–1290CrossRef Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. PCCP 9:1276–1290CrossRef
Zurück zum Zitat Salehi J, Heyhat M, Rajabpour A (2013) Enhancement of thermal conductivity of silver nanofluid synthesized by a one-step method with the effect of polyvinylpyrrolidone on thermal behavior. Appl Phys Lett 102:231907CrossRef Salehi J, Heyhat M, Rajabpour A (2013) Enhancement of thermal conductivity of silver nanofluid synthesized by a one-step method with the effect of polyvinylpyrrolidone on thermal behavior. Appl Phys Lett 102:231907CrossRef
Zurück zum Zitat Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409CrossRef Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409CrossRef
Zurück zum Zitat Shen L, Wang H, Dong M, Ma Z, Wang H (2012) Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Phys Lett A 376:1053–1057CrossRef Shen L, Wang H, Dong M, Ma Z, Wang H (2012) Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Phys Lett A 376:1053–1057CrossRef
Zurück zum Zitat Shih C-J, Lin S, Sharma R, Strano MS, Blankschtein D (2011) Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28:235–241CrossRef Shih C-J, Lin S, Sharma R, Strano MS, Blankschtein D (2011) Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28:235–241CrossRef
Zurück zum Zitat Solomon I, Schmidt MP, Sénémaud C, Driss Khodja M (1988) Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy. Phys Rev B 38:13263–13270CrossRef Solomon I, Schmidt MP, Sénémaud C, Driss Khodja M (1988) Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy. Phys Rev B 38:13263–13270CrossRef
Zurück zum Zitat Sun L et al (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances 2:4498–4506. doi:10.1039/C2RA01367C CrossRef Sun L et al (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances 2:4498–4506. doi:10.​1039/​C2RA01367C CrossRef
Zurück zum Zitat Tesfai W, Singh P, Shatilla Y, Iqbal M, Abdala A (2013) Rheology and microstructure of dilute graphene oxide suspension. J Nanopart Res 15:1–7. doi:10.1007/s11051-013-1989-3 Tesfai W, Singh P, Shatilla Y, Iqbal M, Abdala A (2013) Rheology and microstructure of dilute graphene oxide suspension. J Nanopart Res 15:1–7. doi:10.​1007/​s11051-013-1989-3
Zurück zum Zitat White SB, Shih AJ-M, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:1–5CrossRef White SB, Shih AJ-M, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:1–5CrossRef
Zurück zum Zitat Wojtoniszak M, Mijowska E (2012) Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J Nanopart Res 14:1–7. doi:10.1007/s11051-012-1248-z Wojtoniszak M, Mijowska E (2012) Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J Nanopart Res 14:1–7. doi:10.​1007/​s11051-012-1248-z
Zurück zum Zitat Yeganeh M, Shahtahmasebi N, Kompany A, Goharshadi E, Youssefi A, Šiller L (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53:3186–3192CrossRef Yeganeh M, Shahtahmasebi N, Kompany A, Goharshadi E, Youssefi A, Šiller L (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53:3186–3192CrossRef
Zurück zum Zitat Yin D et al (2013) Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 24:105102CrossRef Yin D et al (2013) Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 24:105102CrossRef
Zurück zum Zitat Yu W, Xie H, Bao D (2010a) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 21:055705CrossRef Yu W, Xie H, Bao D (2010a) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 21:055705CrossRef
Zurück zum Zitat Yu W, Xie H, Chen W (2010b) Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys 107:094317CrossRef Yu W, Xie H, Chen W (2010b) Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys 107:094317CrossRef
Metadaten
Titel
Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids
verfasst von
Mahboobeh Hadadian
Elaheh K. Goharshadi
Abbas Youssefi
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 12/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2788-1

Weitere Artikel der Ausgabe 12/2014

Journal of Nanoparticle Research 12/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.