Skip to main content
Erschienen in: Quantum Information Processing 8/2019

01.08.2019

Coupled quantum Otto heat engine and refrigerator with inner friction

verfasst von: Deniz Türkpençe, Ferdi Altintas

Erschienen in: Quantum Information Processing | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate two coupled spins 1/2 in a magnetic field as the working substance of the quantum Otto cycle. In the quantum adiabatic strokes, finite-time parametric transformations are employed either in the coupling strength or in the magnetic field. The operation regimes, where the mode of the cycle is a refrigerator or a heat engine, are explored. The role of the total allocated time to the quantum adiabatic stages on the performance of the quantum Otto refrigerator and the heat engine is investigated in detail. The finite-time adiabatic transformations are found to increase the Shannon entropy which is quantum in origin. The effect known as the inner friction is found to negatively effect the performances of the quantum heat engine and the refrigerator. The strong frictional losses are also found to induce inactive operation regimes where the mode of the cycle is neither a refrigerator nor a heat engine.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2(6), 262 (1959)ADSCrossRef Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2(6), 262 (1959)ADSCrossRef
2.
Zurück zum Zitat Kieu, T.D.: The second law, Maxwell’s Demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93(14), 140403 (2004)ADSMathSciNetCrossRef Kieu, T.D.: The second law, Maxwell’s Demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93(14), 140403 (2004)ADSMathSciNetCrossRef
3.
Zurück zum Zitat Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83(3), 031135 (2011)ADSCrossRef Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83(3), 031135 (2011)ADSCrossRef
4.
Zurück zum Zitat Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90(3), 032102 (2014)ADSCrossRef Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90(3), 032102 (2014)ADSCrossRef
5.
Zurück zum Zitat Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL 113(6), 60002 (2016)ADSCrossRef Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL 113(6), 60002 (2016)ADSCrossRef
6.
Zurück zum Zitat Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72(5), 056110 (2005)ADSCrossRef Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72(5), 056110 (2005)ADSCrossRef
7.
Zurück zum Zitat Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75(5), 051118 (2007)ADSCrossRef Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75(5), 051118 (2007)ADSCrossRef
8.
Zurück zum Zitat Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75(6), 062102 (2007)ADSCrossRef Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75(6), 062102 (2007)ADSCrossRef
9.
Zurück zum Zitat Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)ADSMathSciNetCrossRef Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)ADSMathSciNetCrossRef
11.
Zurück zum Zitat Lin, S., Song, Z.: Non-Hermitian heat engine with all-quantum-adiabatic-process cycle. J. Phys. A Math. Theor. 49(47), 475301 (2016)ADSMathSciNetCrossRef Lin, S., Song, Z.: Non-Hermitian heat engine with all-quantum-adiabatic-process cycle. J. Phys. A Math. Theor. 49(47), 475301 (2016)ADSMathSciNetCrossRef
13.
Zurück zum Zitat Türkpençe, D., Müstecaplıoğlu, Ö.E.: Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93(1), 012145 (2016)ADSCrossRef Türkpençe, D., Müstecaplıoğlu, Ö.E.: Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93(1), 012145 (2016)ADSCrossRef
14.
Zurück zum Zitat Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132(12), 554 (2017)CrossRef Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132(12), 554 (2017)CrossRef
15.
Zurück zum Zitat Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117(5), 50002 (2017)ADSCrossRef Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117(5), 50002 (2017)ADSCrossRef
16.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Minimal temperature of quantum refrigerators. EPL (Europhys. Lett.) 89(2), 20004 (2010)ADSCrossRef Feldmann, T., Kosloff, R.: Minimal temperature of quantum refrigerators. EPL (Europhys. Lett.) 89(2), 20004 (2010)ADSCrossRef
17.
Zurück zum Zitat Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)MathSciNetCrossRef Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)MathSciNetCrossRef
18.
Zurück zum Zitat Hewgill, A., Ferraro, A., De Chiara, G.: Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98(4), 042102 (2018)ADSCrossRef Hewgill, A., Ferraro, A., De Chiara, G.: Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98(4), 042102 (2018)ADSCrossRef
19.
Zurück zum Zitat Chand, S., Biswas, A.: Critical-point behavior of a measurement-based quantum heat engine. Phys. Rev. E 98(5), 052147 (2018)ADSCrossRef Chand, S., Biswas, A.: Critical-point behavior of a measurement-based quantum heat engine. Phys. Rev. E 98(5), 052147 (2018)ADSCrossRef
20.
Zurück zum Zitat Chand, S., Biswas, A.: Measurement-induced operation of two-ion quantum heat machines. Phys. Rev. E 95(3), 032111 (2017)ADSCrossRef Chand, S., Biswas, A.: Measurement-induced operation of two-ion quantum heat machines. Phys. Rev. E 95(3), 032111 (2017)ADSCrossRef
21.
Zurück zum Zitat Mehta, V., Johal, R.S.: Quantum Otto engine with exchange coupling in the presence of level degeneracy. Phys. Rev. E 96(3), 032110 (2017)ADSCrossRef Mehta, V., Johal, R.S.: Quantum Otto engine with exchange coupling in the presence of level degeneracy. Phys. Rev. E 96(3), 032110 (2017)ADSCrossRef
22.
Zurück zum Zitat Chand, S., Biswas, A.: Single-ion quantum Otto engine with always-on bath interaction. EPL (Europhys. Lett.) 118(6), 60003 (2017)ADSCrossRef Chand, S., Biswas, A.: Single-ion quantum Otto engine with always-on bath interaction. EPL (Europhys. Lett.) 118(6), 60003 (2017)ADSCrossRef
23.
Zurück zum Zitat Camati, P.A., Santos, J.F.G., Serra, R.M.: Employing coherence to improve the performance of a quantum heat engine, arXiv:1812.08728 [quant-ph] (2018) Camati, P.A., Santos, J.F.G., Serra, R.M.: Employing coherence to improve the performance of a quantum heat engine, arXiv:​1812.​08728 [quant-ph] (2018)
24.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Transitions between refrigeration regions in extremely short quantum cycles. Phys. Rev. E 93(5), 052150 (2016)ADSCrossRef Feldmann, T., Kosloff, R.: Transitions between refrigeration regions in extremely short quantum cycles. Phys. Rev. E 93(5), 052150 (2016)ADSCrossRef
25.
Zurück zum Zitat Chiara, G.D., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20(11), 113024 (2018)CrossRef Chiara, G.D., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20(11), 113024 (2018)CrossRef
26.
Zurück zum Zitat Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. EPL (Europhys. Lett.) 88(5), 50003 (2009)ADSCrossRef Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. EPL (Europhys. Lett.) 88(5), 50003 (2009)ADSCrossRef
27.
Zurück zum Zitat Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299(5608), 862 (2003)ADSCrossRef Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299(5608), 862 (2003)ADSCrossRef
28.
Zurück zum Zitat Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADSCrossRef Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADSCrossRef
29.
Zurück zum Zitat Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014)ADSCrossRef Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014)ADSCrossRef
30.
Zurück zum Zitat Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-Ion heat engine at maximum power. Phys. Rev. Lett. 109(20), 203006 (2012)ADSCrossRef Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-Ion heat engine at maximum power. Phys. Rev. Lett. 109(20), 203006 (2012)ADSCrossRef
31.
Zurück zum Zitat Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108(8), 085303 (2012)ADSCrossRef Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108(8), 085303 (2012)ADSCrossRef
32.
Zurück zum Zitat Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112(15), 150602 (2014)ADSCrossRef Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112(15), 150602 (2014)ADSCrossRef
33.
Zurück zum Zitat Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL (Europhys. Lett.) 99(2), 27001 (2012)ADSCrossRef Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL (Europhys. Lett.) 99(2), 27001 (2012)ADSCrossRef
34.
Zurück zum Zitat Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73(3), 036122 (2006)ADSCrossRef Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73(3), 036122 (2006)ADSCrossRef
35.
Zurück zum Zitat Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91(2), 023816 (2015)ADSCrossRef Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91(2), 023816 (2015)ADSCrossRef
36.
Zurück zum Zitat Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352(6283), 325 (2016)ADSMathSciNetCrossRef Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352(6283), 325 (2016)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine, arXiv:1803.06021 [cond-mat, physics:quant-ph] (2018) Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine, arXiv:​1803.​06021 [cond-mat, physics:quant-ph] (2018)
38.
Zurück zum Zitat de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: arXiv:1811.02917 [quant-ph] (2018) de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: arXiv:​1811.​02917 [quant-ph] (2018)
39.
Zurück zum Zitat Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119(5), 050602 (2017)ADSCrossRef Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119(5), 050602 (2017)ADSCrossRef
40.
Zurück zum Zitat Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94(5), 053859 (2016)ADSCrossRef Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94(5), 053859 (2016)ADSCrossRef
41.
Zurück zum Zitat Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)ADSCrossRef Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)ADSCrossRef
42.
Zurück zum Zitat Thomas, G., Banik, M., Ghosh, S.: Implications of coupling in quantum thermodynamic machines. Entropy 19(9), 442 (2017)CrossRef Thomas, G., Banik, M., Ghosh, S.: Implications of coupling in quantum thermodynamic machines. Entropy 19(9), 442 (2017)CrossRef
43.
Zurück zum Zitat Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129(1), 4 (2014)ADSCrossRef Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129(1), 4 (2014)ADSCrossRef
44.
Zurück zum Zitat Çakmak, S., Altintas, F., Müstecaplıoğlu, Ö.E.: Lipkin–Meshkov–Glick model in a quantum Otto cycle. Eur. Phys. J. Plus 131(6), 197 (2016)CrossRef Çakmak, S., Altintas, F., Müstecaplıoğlu, Ö.E.: Lipkin–Meshkov–Glick model in a quantum Otto cycle. Eur. Phys. J. Plus 131(6), 197 (2016)CrossRef
45.
Zurück zum Zitat Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5(3), 031044 (2015) Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5(3), 031044 (2015)
46.
Zurück zum Zitat Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6(2), 024004 (2016)ADSCrossRef Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6(2), 024004 (2016)ADSCrossRef
47.
Zurück zum Zitat Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47(45), 455002 (2014)ADSMathSciNetCrossRef Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47(45), 455002 (2014)ADSMathSciNetCrossRef
48.
Zurück zum Zitat Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)ADSCrossRef Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)ADSCrossRef
51.
Zurück zum Zitat Rezek, Y., Salamon, P., Hoffmann, K.H., Kosloff, R.: The quantum refrigerator: the quest for absolute zero. EPL 85(3), 30008 (2009)ADSCrossRef Rezek, Y., Salamon, P., Hoffmann, K.H., Kosloff, R.: The quantum refrigerator: the quest for absolute zero. EPL 85(3), 30008 (2009)ADSCrossRef
52.
Zurück zum Zitat Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87(7), 166 (2014)ADSCrossRef Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87(7), 166 (2014)ADSCrossRef
53.
Zurück zum Zitat Campisi, M., Pekola, J., Fazio, R.: Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments. New J. Phys. 17(3), 035012 (2015)ADSCrossRef Campisi, M., Pekola, J., Fazio, R.: Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments. New J. Phys. 17(3), 035012 (2015)ADSCrossRef
54.
Zurück zum Zitat Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17(7), 075007 (2015)ADSCrossRef Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17(7), 075007 (2015)ADSCrossRef
55.
Zurück zum Zitat Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8(5), 83 (2006)ADSCrossRef Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8(5), 83 (2006)ADSCrossRef
56.
Zurück zum Zitat Wang, J., He, J., Xin, Y.: Performance analysis of a spin quantum heat engine cycle with internal friction. Phys. Scr. 75(2), 227 (2007)ADSCrossRef Wang, J., He, J., Xin, Y.: Performance analysis of a spin quantum heat engine cycle with internal friction. Phys. Scr. 75(2), 227 (2007)ADSCrossRef
57.
Zurück zum Zitat Kosloff, R., Feldmann, T.: Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65(5), 055102 (2002)ADSCrossRef Kosloff, R., Feldmann, T.: Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65(5), 055102 (2002)ADSCrossRef
58.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68(1), 016101 (2003)ADSCrossRef Feldmann, T., Kosloff, R.: Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68(1), 016101 (2003)ADSCrossRef
59.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70(4), 046110 (2004)ADSCrossRef Feldmann, T., Kosloff, R.: Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70(4), 046110 (2004)ADSCrossRef
60.
Zurück zum Zitat Çakmak, B., Müstecaplıoğlu, Ö.E.: Spin quantum heat engines with shortcuts to adiabaticity. Phys. Rev. E 99(3), 032108 (2019)ADSCrossRef Çakmak, B., Müstecaplıoğlu, Ö.E.: Spin quantum heat engines with shortcuts to adiabaticity. Phys. Rev. E 99(3), 032108 (2019)ADSCrossRef
61.
Zurück zum Zitat Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71(4), 046107 (2005)ADSMathSciNetCrossRef Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71(4), 046107 (2005)ADSMathSciNetCrossRef
62.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73(2), 025107 (2006)ADSCrossRef Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73(2), 025107 (2006)ADSCrossRef
63.
Zurück zum Zitat Kosloff, R., Feldmann, T.: Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 82(1), 011134 (2010)ADSCrossRef Kosloff, R., Feldmann, T.: Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 82(1), 011134 (2010)ADSCrossRef
64.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Short time cycles of purely quantum refrigerators. Phys. Rev. E 85(5), 051114 (2012)ADSCrossRef Feldmann, T., Kosloff, R.: Short time cycles of purely quantum refrigerators. Phys. Rev. E 85(5), 051114 (2012)ADSCrossRef
65.
Zurück zum Zitat Plastina, F., Alecce, A., Apollaro, T., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113(26), 260601 (2014)ADSCrossRef Plastina, F., Alecce, A., Apollaro, T., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113(26), 260601 (2014)ADSCrossRef
66.
Zurück zum Zitat Zheng, Y., Campbell, S., De Chiara, G., Poletti, D.: Cost of counterdiabatic driving and work output. Phys. Rev. A 94(4), 042132 (2016)ADSCrossRef Zheng, Y., Campbell, S., De Chiara, G., Poletti, D.: Cost of counterdiabatic driving and work output. Phys. Rev. A 94(4), 042132 (2016)ADSCrossRef
67.
Zurück zum Zitat Zheng, Y., Hänggi, P., Poletti, D.: Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. Phys. Rev. E 94(1), 012137 (2016)ADSCrossRef Zheng, Y., Hänggi, P., Poletti, D.: Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. Phys. Rev. E 94(1), 012137 (2016)ADSCrossRef
68.
Zurück zum Zitat Ivanchenko, E.A.: Quantum Otto cycle efficiency on coupled qudits. Phys. Rev. E 92(3), 032124 (2015)ADSCrossRef Ivanchenko, E.A.: Quantum Otto cycle efficiency on coupled qudits. Phys. Rev. E 92(3), 032124 (2015)ADSCrossRef
69.
Zurück zum Zitat Uzdin, R., Kosloff, R.: The multilevel four-stroke swap engine and its environment. New J. Phys. 16(9), 095003 (2014)ADSCrossRef Uzdin, R., Kosloff, R.: The multilevel four-stroke swap engine and its environment. New J. Phys. 16(9), 095003 (2014)ADSCrossRef
70.
Zurück zum Zitat Çakmak, S., Altintas, F., Gençten, A., Müstecaplıoğlu, Ö.E.: Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71(3), 75 (2017)ADSCrossRef Çakmak, S., Altintas, F., Gençten, A., Müstecaplıoğlu, Ö.E.: Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71(3), 75 (2017)ADSCrossRef
71.
Zurück zum Zitat Çakmak, S., Altintas, F., Müstecaplıoğlu, Ö.E.: Irreversibility in a unitary finite-rate protocol: the concept of internal friction. Phys. Scr. 91(7), 075101 (2016)ADSCrossRef Çakmak, S., Altintas, F., Müstecaplıoğlu, Ö.E.: Irreversibility in a unitary finite-rate protocol: the concept of internal friction. Phys. Scr. 91(7), 075101 (2016)ADSCrossRef
72.
Zurück zum Zitat Deffner, S.: Efficiency of harmonic quantum Otto engines at maximal power. Entropy 20, 875 (2018)ADSCrossRef Deffner, S.: Efficiency of harmonic quantum Otto engines at maximal power. Entropy 20, 875 (2018)ADSCrossRef
73.
Zurück zum Zitat Peña, F.J., et al.: Magnetic Otto engine for an electron in a quantum dot: classical and quantum approach. Preprints 2019010079 (2019) Peña, F.J., et al.: Magnetic Otto engine for an electron in a quantum dot: classical and quantum approach. Preprints 2019010079 (2019)
74.
Zurück zum Zitat Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)ADSCrossRef Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)ADSCrossRef
75.
Zurück zum Zitat Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A.G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)ADSCrossRef Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A.G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)ADSCrossRef
76.
Zurück zum Zitat Cherubim, C., Brito, F., Deffner, S.: Non-thermal quantum engine in transmon qubits. Entropy 21(6), 545 (2019)ADSCrossRef Cherubim, C., Brito, F., Deffner, S.: Non-thermal quantum engine in transmon qubits. Entropy 21(6), 545 (2019)ADSCrossRef
77.
Zurück zum Zitat Vidal, J., Palacios, G., Aslangul, C.: Entanglement dynamics in the Lipkin–Meshkov–Glick model. Phys. Rev. A 70(6), 062304 (2004)ADSCrossRef Vidal, J., Palacios, G., Aslangul, C.: Entanglement dynamics in the Lipkin–Meshkov–Glick model. Phys. Rev. A 70(6), 062304 (2004)ADSCrossRef
78.
Zurück zum Zitat Wang, X., Sanders, B.C.: Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A 68(1), 012101 (2003)ADSCrossRef Wang, X., Sanders, B.C.: Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A 68(1), 012101 (2003)ADSCrossRef
79.
Zurück zum Zitat Lipkin, H.J., Meshkov, N., Glick, A.J.: Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 62(2), 188 (1965)MathSciNetCrossRef Lipkin, H.J., Meshkov, N., Glick, A.J.: Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 62(2), 188 (1965)MathSciNetCrossRef
80.
Zurück zum Zitat Zibold, T., Nicklas, E., Gross, C., Oberthaler, M.K.: Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105(20), 204101 (2010)ADSCrossRef Zibold, T., Nicklas, E., Gross, C., Oberthaler, M.K.: Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105(20), 204101 (2010)ADSCrossRef
81.
Zurück zum Zitat Morrison, S., Parkins, A.S.: Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick Model with proposed realization in optical cavity QED. Phys. Rev. Lett. 100(4), 040403 (2008)ADSCrossRef Morrison, S., Parkins, A.S.: Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick Model with proposed realization in optical cavity QED. Phys. Rev. Lett. 100(4), 040403 (2008)ADSCrossRef
82.
Zurück zum Zitat Larson, J.: Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model. EPL 90(5), 54001 (2010)ADSCrossRef Larson, J.: Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model. EPL 90(5), 54001 (2010)ADSCrossRef
83.
Zurück zum Zitat Chen, G., Liang, J.Q., Jia, S.: Interaction-induced Lipkin–Meshkov–Glick model in a Bose–Einstein condensate inside an optical cavity. Opt. Express 17(22), 19682 (2009)ADSCrossRef Chen, G., Liang, J.Q., Jia, S.: Interaction-induced Lipkin–Meshkov–Glick model in a Bose–Einstein condensate inside an optical cavity. Opt. Express 17(22), 19682 (2009)ADSCrossRef
84.
Zurück zum Zitat The system operation where \(Q_H>0\), \(Q_L<0\) and \(W<0\) is sometimes regarded as an oven (or an accelerator). The work input is dumped to the cold entropy sink more than the spontaneous thermal conduction. In the present study, we only deal with the quantum heat engine and refrigerator cases, for brevity, and call the other possible situations as having no industrial use The system operation where \(Q_H>0\), \(Q_L<0\) and \(W<0\) is sometimes regarded as an oven (or an accelerator). The work input is dumped to the cold entropy sink more than the spontaneous thermal conduction. In the present study, we only deal with the quantum heat engine and refrigerator cases, for brevity, and call the other possible situations as having no industrial use
Metadaten
Titel
Coupled quantum Otto heat engine and refrigerator with inner friction
verfasst von
Deniz Türkpençe
Ferdi Altintas
Publikationsdatum
01.08.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 8/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2366-7

Weitere Artikel der Ausgabe 8/2019

Quantum Information Processing 8/2019 Zur Ausgabe

Neuer Inhalt