Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2014

01.01.2014 | BUILDING COMPONENTS AND BUILDINGS

Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability

verfasst von: Tatiana García-Segura, Víctor Yepes, Julián Alcalá

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Blended cements use waste products to replace Portland cement, the main contributor to CO2 emissions in concrete manufacture. Using blended cements reduces the embodied greenhouse gas emissions; however, little attention has been paid to the reduction in CO2 capture (carbonation) and durability. The aim of this study is to determine if the reduction in production emissions of blended cements compensates for the reduced durability and CO2 capture.

Methods

This study evaluates CO2 emissions and CO2 capture for a reinforced concrete column during its service life and after demolition and reuse as gravel filling material. Concrete depletion, due to carbonation and the unavoidable steel embedded corrosion, is studied, as this process consequently ends the concrete service life. Carbonation deepens progressively during service life and captures CO2 even after demolition due to the greater exposed surface area. In this study, results are presented as a function of cement replaced by fly ash (FA) and blast furnace slag (BFS).

Results and discussion

Concrete made with Portland cement, FA (35 % FA), and BFS blended cements (80 % BFS) captures 47, 41, and 20 % of CO2 emissions, respectively. The service life of blended cements with high amounts of cement replacement, like CEM III/A (50 % BFS), CEM III/B (80 % BFS), and CEM II/B-V (35 % FA), was about 10 % shorter, given the higher carbonation rate coefficient. Compared to Portland cement and despite the reduced CO2 capture and service life, CEM III/B emitted 20 % less CO2 per year.

Conclusions

To obtain reliable results in a life cycle assessment, it is crucial to consider carbonation during use and after demolition. Replacing Portland cement with FA, instead of BFS, leads to a lower material emission factor, since FA needs less processing after being collected, and transport distances are usually shorter. However, greater reductions were achieved using BFS, since a larger amount of cement can be replaced. Blended cements emit less CO2 per year during the life cycle of a structure, although a high cement replacement reduces the service life notably. If the demolished concrete is crushed and recycled as gravel filling material, carbonation can cut CO2 emissions by half. A case study is presented in this paper demonstrating how the results may be utilized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359CrossRef Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359CrossRef
Zurück zum Zitat Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138CrossRef Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138CrossRef
Zurück zum Zitat Berge B (2000) The ecology of building materials. Architectural Press, Oxford Berge B (2000) The ecology of building materials. Architectural Press, Oxford
Zurück zum Zitat Bertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, Weinheim Bertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, Weinheim
Zurück zum Zitat Börjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588CrossRef Börjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588CrossRef
Zurück zum Zitat Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372CrossRef Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372CrossRef
Zurück zum Zitat CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, Brussels CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, Brussels
Zurück zum Zitat CIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, Sacramento CIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, Sacramento
Zurück zum Zitat Collins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556CrossRef Collins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556CrossRef
Zurück zum Zitat Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, Spain Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, Spain
Zurück zum Zitat Dodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286CrossRef Dodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286CrossRef
Zurück zum Zitat Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, Spain Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, Spain
Zurück zum Zitat Galán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186CrossRef Galán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186CrossRef
Zurück zum Zitat Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288 Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288
Zurück zum Zitat Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902CrossRef Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902CrossRef
Zurück zum Zitat Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930CrossRef Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930CrossRef
Zurück zum Zitat ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, Switzerland ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, Switzerland
Zurück zum Zitat ISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, Switzerland ISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, Switzerland
Zurück zum Zitat Jiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702CrossRef Jiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702CrossRef
Zurück zum Zitat Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224CrossRef Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224CrossRef
Zurück zum Zitat Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918CrossRef Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918CrossRef
Zurück zum Zitat Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, Stockholm Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, Stockholm
Zurück zum Zitat Leber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308 Leber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308
Zurück zum Zitat Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, Spain Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, Spain
Zurück zum Zitat Marinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264CrossRef Marinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264CrossRef
Zurück zum Zitat Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432CrossRef Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432CrossRef
Zurück zum Zitat O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629CrossRef O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629CrossRef
Zurück zum Zitat Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356CrossRef Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356CrossRef
Zurück zum Zitat Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373 Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373
Zurück zum Zitat Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610CrossRef Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610CrossRef
Zurück zum Zitat Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508CrossRef Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508CrossRef
Zurück zum Zitat Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093CrossRef Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093CrossRef
Zurück zum Zitat Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, Sweden Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, Sweden
Zurück zum Zitat Weil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206CrossRef Weil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206CrossRef
Zurück zum Zitat Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329CrossRef Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329CrossRef
Zurück zum Zitat Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386CrossRef Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386CrossRef
Zurück zum Zitat Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552 Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552
Zurück zum Zitat Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–1328CrossRef Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–1328CrossRef
Metadaten
Titel
Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability
verfasst von
Tatiana García-Segura
Víctor Yepes
Julián Alcalá
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2014
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-013-0614-0

Weitere Artikel der Ausgabe 1/2014

The International Journal of Life Cycle Assessment 1/2014 Zur Ausgabe