Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 12/2017

10.03.2017 | LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS

Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA

verfasst von: Lidia Lombardi, Laura Tribioli, Raffaello Cozzolino, Gino Bella

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The purpose of this study is to compare the environmental impact differences of four types of vehicles on a life cycle assessment (LCA) perspective: a conventional gasoline vehicle, a pure electric vehicle, a plug-in hybrid gasoline-electric vehicle, and a plug-in hybrid fuel cell-battery vehicle. The novelty of the approach is to consider the different powertrains—electric and hybrids—as a repowering of the conventional powertrain. This way, the attention can be focused only on the powertrain differences and inefficiencies, with the added value of avoiding further assumptions, which could cause the analysis to be somehow rough.

Methods

Thus, we compared four powertrain scenarios maintaining the same vehicle chassis, and we compared the impacts from the powertrain production, vehicle use phase, and powertrain end of life only. Hence, special attention was paid to the inventory for powertrain construction and use phase. For the powertrain components, an accurate literature survey has been carried out for the life cycle inventory. For the use phase, several driving cycles, both standardized and real-world type, have been simulated in order to properly evaluate the effect on the fuel/electricity consumption. For the comparison, environmental indicators according to cumulative energy demand (CED) and ReCiPe Midpoint methods have been used. This way, an analysis of the environmental impact, based on a life cycle impact assessment approach, is provided, which allows thoroughly comparing the systems based on the different powertrains. Moreover, a sensitivity analysis on different energy mixes has been included, which represents also a way to take into account changes in electricity production.

Results and discussion

Results are presented according to life cycle impact assessment, which examines the mass and energy inventory input and output data for a product system to translate these data to better identify their possible environmental relevance and significance. In the case of the climate change (CC), fuel depletion (FD), and CED indicators, the lowest value corresponds to the plug-in hybrid gasoline-electric vehicle, followed by the plug-in hybrid fuel cell-battery vehicle, the pure electric, and finally the conventional gasoline vehicle. Substituting a conventional gasoline powertrain with the corresponding pure electric one offers the lowest reduction, but still of valuable amount. In our analysis, for the considered systems, the reduction of the value of CC is about 15%, the reduction of the value of CED is about 12%, and the reduction of FD value is about 28%. This analysis underlines the weakness of a tank-to-wheel comparison, according to which the pure electric powertrain, having a very high average efficiency, results in being the less consuming, followed by the hybrid gasoline-electric and fuel cell-battery vehicles, respectively, and then by the conventional vehicle. Instead, in terms of CED, the bad influence of the low average efficiency of the Italian electricity production is highlighted. The LCA approach also stresses out the importance of the battery inventory, which can make the environmental performance of the system based on the pure electric vehicle significantly worse than those based on the conventional vehicle. Of a great significance is the presence of a group of indicators—including human toxicity, eutrophication, and acidification—with lower values in the case of conventional gasoline vehicle than in the electric and hybrid ones, which further confirms that the potential of electrified vehicles strictly depends on an efficient production and recycling of the battery.

Conclusions

The analysis underlines an alarming list of environmental impact indicators, usually neglected, which are worsened by the powertrains electrification. Operating on the production processes, used materials and recycling phase can possibly mitigate these worsening effects. Also, the type of electricity is shown to strongly affect the results. Thus, performing specific evaluations for different countries is crucial and a sensitivity analysis, involving drastically different energy mixes, can allow for taking into account possible changes in the future electricity production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Atherton J (2007) Declaration by the metals industry on recycling principles. Int J Life Cycle Assess 12(1):59–60CrossRef Atherton J (2007) Declaration by the metals industry on recycling principles. Int J Life Cycle Assess 12(1):59–60CrossRef
Zurück zum Zitat Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany. Appl Energ 101:103–111CrossRef Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany. Appl Energ 101:103–111CrossRef
Zurück zum Zitat Benson M, Bennett CR, Harry JE, Patel MK, Cross M (2000) The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour Conserv Recy 31:1–7CrossRef Benson M, Bennett CR, Harry JE, Patel MK, Cross M (2000) The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour Conserv Recy 31:1–7CrossRef
Zurück zum Zitat Biganzoli L, Falbo A, Forte F, Grosso M, Rigamonti L (2015) Mass balance and life cycle assessment of the waste electrical and electronic equipment management system implemented in Lombardia Region (Italy). Sci Total Environ 524–525:361–375CrossRef Biganzoli L, Falbo A, Forte F, Grosso M, Rigamonti L (2015) Mass balance and life cycle assessment of the waste electrical and electronic equipment management system implemented in Lombardia Region (Italy). Sci Total Environ 524–525:361–375CrossRef
Zurück zum Zitat Boureima F-S, Messagie M, Matheys J, Wynen V, Sergeant N, Van Mierlo J, De Vos M, De Caeve B (2009) Comparative LCA of electric, hybrid, LPG and gasoline cars in Belgian context, Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exposition 2008 - Sustainability: the future of transportation, EVS 2009 Boureima F-S, Messagie M, Matheys J, Wynen V, Sergeant N, Van Mierlo J, De Vos M, De Caeve B (2009) Comparative LCA of electric, hybrid, LPG and gasoline cars in Belgian context, Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exposition 2008 - Sustainability: the future of transportation, EVS 2009
Zurück zum Zitat Campanari S, Manzolini G, de la Iglesia FG (2009) Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J Power Sources 186:464–477CrossRef Campanari S, Manzolini G, de la Iglesia FG (2009) Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J Power Sources 186:464–477CrossRef
Zurück zum Zitat Casals LC, Martinez-Laserna E, García BA, Nieto N (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. J Clean Prod 127:425–437CrossRef Casals LC, Martinez-Laserna E, García BA, Nieto N (2016) Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. J Clean Prod 127:425–437CrossRef
Zurück zum Zitat Chan CC (2002) The state of the art of electric and hybrid vehicles. Proceedings of the IEEE 90 (2):247–275 Chan CC (2002) The state of the art of electric and hybrid vehicles. Proceedings of the IEEE 90 (2):247–275
Zurück zum Zitat Cozzolino R, Tribioli L (2015) On-board diesel autothermal reforming for PEM fuel cells: simulation and optimiza-tion, AIP Conference Proceedings; ICNAAM2014, Rhodes, 22–28/09/2014; 1648(570013), 2015, doi: 10.1063/1.4912799 Cozzolino R, Tribioli L (2015) On-board diesel autothermal reforming for PEM fuel cells: simulation and optimiza-tion, AIP Conference Proceedings; ICNAAM2014, Rhodes, 22–28/09/2014; 1648(570013), 2015, doi: 10.​1063/​1.​4912799
Zurück zum Zitat Curran MA (2006) Corporation SAI. Life-cycle assessment: principles and practice: National Risk Management Re-search Laboratory, Office of Research and Development, US Environmental Protection Agency Curran MA (2006) Corporation SAI. Life-cycle assessment: principles and practice: National Risk Management Re-search Laboratory, Office of Research and Development, US Environmental Protection Agency
Zurück zum Zitat Devineni M, Dinger A, Gerrits M, Mezger T, Mosquet X, Russo M, Sticher G, Zablit H (2011) Powering autos to 2020: the era of the electric car?, Boston Consulting Group Devineni M, Dinger A, Gerrits M, Mezger T, Mosquet X, Russo M, Sticher G, Zablit H (2011) Powering autos to 2020: the era of the electric car?, Boston Consulting Group
Zurück zum Zitat Donateo T, Ingrosso F, Lacandia F, Pagliara E (2013) Impact of hybrid and electric mobility in a medium sized historic city, SAE Tech Paper No. 2013–24-0077, ISSN 014867191 Donateo T, Ingrosso F, Lacandia F, Pagliara E (2013) Impact of hybrid and electric mobility in a medium sized historic city, SAE Tech Paper No. 2013–24-0077, ISSN 014867191
Zurück zum Zitat Duclos L, Svecova L, Laforest V, Mandil G, Thivel P-X (2016) Process development and optimization for platinum recovery from PEM fuel cell catalyst. Hydrometallurgy 160:79–89CrossRef Duclos L, Svecova L, Laforest V, Mandil G, Thivel P-X (2016) Process development and optimization for platinum recovery from PEM fuel cell catalyst. Hydrometallurgy 160:79–89CrossRef
Zurück zum Zitat Dunn JB, Gaines L, Sullivan J, Wang MQ (2012) Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ Sci Technol 46(22):12704–12710CrossRef Dunn JB, Gaines L, Sullivan J, Wang MQ (2012) Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ Sci Technol 46(22):12704–12710CrossRef
Zurück zum Zitat Egilmez G, Kucukvar M, Tatari O (2013) Sustainability assessment of U.S. manufacturing sectors: an economic input output-based frontier approach. J Clean Prod 53:91–102CrossRef Egilmez G, Kucukvar M, Tatari O (2013) Sustainability assessment of U.S. manufacturing sectors: an economic input output-based frontier approach. J Clean Prod 53:91–102CrossRef
Zurück zum Zitat Faria R, Moura P, Delgado J, de Almeida AT (2012) A sustainability assessment of electric vehicles as a personal mobility system. Energ Convers Manage 61:19–30CrossRef Faria R, Moura P, Delgado J, de Almeida AT (2012) A sustainability assessment of electric vehicles as a personal mobility system. Energ Convers Manage 61:19–30CrossRef
Zurück zum Zitat Faria R, Marques P, Moura P, Freire F, Delgado J, de Almeida AT (2013) Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew Sust Energ Rev 24:271–287CrossRef Faria R, Marques P, Moura P, Freire F, Delgado J, de Almeida AT (2013) Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew Sust Energ Rev 24:271–287CrossRef
Zurück zum Zitat Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRef Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRef
Zurück zum Zitat Freire F (2011) Comparative life-cycle assessment of electric and conventional vehicles in Portugal, 43rd LCA Discussion Forum Life Cycle Assessment Of Electromobility Answers And Challenges, 2011 Freire F (2011) Comparative life-cycle assessment of electric and conventional vehicles in Portugal, 43rd LCA Discussion Forum Life Cycle Assessment Of Electromobility Answers And Challenges, 2011
Zurück zum Zitat Frischknecht R, Flury K (2011) Life cycle assessment of electric mobility: answers and challenges—Zurich, April 6, 2011. Int J Life Cycle Assess 16:691–695CrossRef Frischknecht R, Flury K (2011) Life cycle assessment of electric mobility: answers and challenges—Zurich, April 6, 2011. Int J Life Cycle Assess 16:691–695CrossRef
Zurück zum Zitat Frischknect R, Jungbluth N, Althaus HJ, Doka G, Dones R, Heck T, Hellweh S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10:3–9CrossRef Frischknect R, Jungbluth N, Althaus HJ, Doka G, Dones R, Heck T, Hellweh S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10:3–9CrossRef
Zurück zum Zitat Goedkoop M, Heijungs R, Huijbregts M (2013) An De Schryver, Jaap Struijs, Rosalie van Zelm. ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) Report I: Characterisation. February 2013. Available at http://www.lcia-recipe.net Goedkoop M, Heijungs R, Huijbregts M (2013) An De Schryver, Jaap Struijs, Rosalie van Zelm. ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) Report I: Characterisation. February 2013. Available at http://​www.​lcia-recipe.​net
Zurück zum Zitat Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:997–1014CrossRef Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:997–1014CrossRef
Zurück zum Zitat Hawkins T, Singh B, Majeau-Bettez G, Stromman A (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64CrossRef Hawkins T, Singh B, Majeau-Bettez G, Stromman A (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64CrossRef
Zurück zum Zitat Held M, Baumann M (2011) Assessment of the environmental impacts of electric vehicle concepts. In: Finkbeiner M (ed) Towards life cycle sustainability management, 1st edn. Springer, Dordrecht, pp 535–546CrossRef Held M, Baumann M (2011) Assessment of the environmental impacts of electric vehicle concepts. In: Finkbeiner M (ed) Towards life cycle sustainability management, 1st edn. Springer, Dordrecht, pp 535–546CrossRef
Zurück zum Zitat Huijbregts MAJ, Linda JA, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, van de Meent D, Ragas AMJ, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environ-mental performance of products? Environ Sci Technol 40(3):641–648CrossRef Huijbregts MAJ, Linda JA, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, van de Meent D, Ragas AMJ, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environ-mental performance of products? Environ Sci Technol 40(3):641–648CrossRef
Zurück zum Zitat IEA (2012) Worls energy outlook 2012. International Energy Agency, ParisCrossRef IEA (2012) Worls energy outlook 2012. International Energy Agency, ParisCrossRef
Zurück zum Zitat ISO 14040:2006 (2006) Environmental management–life cycle assessment—principles and framework. Interna-tional Organisation for Standardisation (ISO), Geneva ISO 14040:2006 (2006) Environmental management–life cycle assessment—principles and framework. Interna-tional Organisation for Standardisation (ISO), Geneva
Zurück zum Zitat Kudoh Y, Nansai K, Kondo Y, Tahara K (2007) Life cycle CO2 emissions of FCEV, BEV and GV in actual use, Proceedings of the 23rd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exposition 2007 - Sustainability: The Future of Transportation, EVS 2007 Kudoh Y, Nansai K, Kondo Y, Tahara K (2007) Life cycle CO2 emissions of FCEV, BEV and GV in actual use, Proceedings of the 23rd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exposition 2007 - Sustainability: The Future of Transportation, EVS 2007
Zurück zum Zitat Lip Huat Saw B, Ye Y, Tay AAO (2016) Integration issues of lithium-ion battery into electric vehicles battery pack. J Clean Prod 113:1032–1045CrossRef Lip Huat Saw B, Ye Y, Tay AAO (2016) Integration issues of lithium-ion battery into electric vehicles battery pack. J Clean Prod 113:1032–1045CrossRef
Zurück zum Zitat Longo S, Antonucci V, Cellura M, Ferraro M (2014) Life cycle assessment of storage systems: the case study of a sodium/nickel chloride battery. J Clean Prod 85:337–346CrossRef Longo S, Antonucci V, Cellura M, Ferraro M (2014) Life cycle assessment of storage systems: the case study of a sodium/nickel chloride battery. J Clean Prod 85:337–346CrossRef
Zurück zum Zitat Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef
Zurück zum Zitat Messagie M, Bouremia F, Matheys J, Sergeant N, Timmermans J-M, Macharis C, Van Mierlo J (2010) Environ-mental Performance of a battery electric vehicle: a descriptive life cycle assessment approach, EVS25, Shenzhen, China, November 5–9, 2010 Messagie M, Bouremia F, Matheys J, Sergeant N, Timmermans J-M, Macharis C, Van Mierlo J (2010) Environ-mental Performance of a battery electric vehicle: a descriptive life cycle assessment approach, EVS25, Shenzhen, China, November 5–9, 2010
Zurück zum Zitat Nanaki EA, Koroneos CJ (2013) Comparative economic and environmental analysis of conventional, hybrid and electric vehicles e the case study of Greece. J Clean Prod 53:261–266CrossRef Nanaki EA, Koroneos CJ (2013) Comparative economic and environmental analysis of conventional, hybrid and electric vehicles e the case study of Greece. J Clean Prod 53:261–266CrossRef
Zurück zum Zitat Nordelöf A, Messagie M, Tillman A-M, Ljunggren Söderman M, Van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J Life Cycle Assess 19(11):1866–1890CrossRef Nordelöf A, Messagie M, Tillman A-M, Ljunggren Söderman M, Van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J Life Cycle Assess 19(11):1866–1890CrossRef
Zurück zum Zitat Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus H-J (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556CrossRef Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus H-J (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556CrossRef
Zurück zum Zitat Raugei M, Morrey D, Hutchinson A, Winfield P (2015) A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J Clean Prod 108(Part A):1168–1176CrossRef Raugei M, Morrey D, Hutchinson A, Winfield P (2015) A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J Clean Prod 108(Part A):1168–1176CrossRef
Zurück zum Zitat Rice G, Clift R, Burns R (1997) LCA software review: comparison of currently available European LCA software. Int J Life Cycle Assess 2:53–59CrossRef Rice G, Clift R, Burns R (1997) LCA software review: comparison of currently available European LCA software. Int J Life Cycle Assess 2:53–59CrossRef
Zurück zum Zitat Rigamonti L, Grosso M, Sunseri MC (2009) Influence of assumptions about selection and recycling efficiencies on the LCA of integrated waste management systems. Int J Life Cycle Assess 14:411–419CrossRef Rigamonti L, Grosso M, Sunseri MC (2009) Influence of assumptions about selection and recycling efficiencies on the LCA of integrated waste management systems. Int J Life Cycle Assess 14:411–419CrossRef
Zurück zum Zitat Simon B, Weil M (2013) Analysis of materials and energy flows of different lithium ion traction batteries. Rev Métall 110(1):65–76CrossRef Simon B, Weil M (2013) Analysis of materials and energy flows of different lithium ion traction batteries. Rev Métall 110(1):65–76CrossRef
Zurück zum Zitat Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energ Convers Manage 58:134–148CrossRef Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energ Convers Manage 58:134–148CrossRef
Zurück zum Zitat Timmermans J-M, Matheys J, Van Mierlo J, Lataire P (2006) Environmental rating of vehicles with different fuels and drivetrains: a univocal and applicable methodology. Eur J Transp Infrast 6(4):313–334 Timmermans J-M, Matheys J, Van Mierlo J, Lataire P (2006) Environmental rating of vehicles with different fuels and drivetrains: a univocal and applicable methodology. Eur J Transp Infrast 6(4):313–334
Zurück zum Zitat Tribioli L, Barbieri M, Capata R, Sciubba E, Jannelli E, Bella G (2014) A real time energy management strategy for plug-in hybrid electric vehicles based on optimal control theory. Energ Proc 45:949–958CrossRef Tribioli L, Barbieri M, Capata R, Sciubba E, Jannelli E, Bella G (2014) A real time energy management strategy for plug-in hybrid electric vehicles based on optimal control theory. Energ Proc 45:949–958CrossRef
Zurück zum Zitat Tribioli L, Cozzolino R, Barbieri M (2015) Optimal control of a repowered vehicle: plug-in fuel cell against plug-in hybrid electric powertrain, AIP Conference Proceedings; 1648 (570014), ICNAAM2014, Rhodes, 22–28/09/2014. 10.1063/1.4912800 Tribioli L, Cozzolino R, Barbieri M (2015) Optimal control of a repowered vehicle: plug-in fuel cell against plug-in hybrid electric powertrain, AIP Conference Proceedings; 1648 (570014), ICNAAM2014, Rhodes, 22–28/09/2014. 10.​1063/​1.​4912800
Zurück zum Zitat Vertin K, Reek A (2014) Reversibility of gasoline sulfur effects on the exhaust emissions of late model vehicles. SAE Int J Fuels Lubr 7(2):600–615CrossRef Vertin K, Reek A (2014) Reversibility of gasoline sulfur effects on the exhaust emissions of late model vehicles. SAE Int J Fuels Lubr 7(2):600–615CrossRef
Zurück zum Zitat Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-life model for graphite-LiFePo4 cells. J Power Sources 1963942–3948 Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2011) Cycle-life model for graphite-LiFePo4 cells. J Power Sources 1963942–3948
Zurück zum Zitat Williamson SS (2005) Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis. IEEE T Veh Technol 54(3):856–862CrossRef Williamson SS (2005) Comparative assessment of hybrid electric and fuel cell vehicles based on comprehensive well-to-wheels efficiency analysis. IEEE T Veh Technol 54(3):856–862CrossRef
Zurück zum Zitat Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—critical issues. J Clean Prod 18:1519–1529CrossRef Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—critical issues. J Clean Prod 18:1519–1529CrossRef
Metadaten
Titel
Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA
verfasst von
Lidia Lombardi
Laura Tribioli
Raffaello Cozzolino
Gino Bella
Publikationsdatum
10.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 12/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-017-1294-y

Weitere Artikel der Ausgabe 12/2017

The International Journal of Life Cycle Assessment 12/2017 Zur Ausgabe