Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 4/2019

04.03.2019 | COMMENTARY AND DISCUSSION ARTICLE

A unified framework of life cycle assessment

verfasst von: Yi Yang

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The dichotomy between the attributional approach and the consequential approach is one of the major unsettled questions in life cycle assessment (LCA). Debates continue on. Here, I suggest a different view that hopefully will help us move past the dichotomy and toward a unified framework for decision support.

Methods

I argue the dichotomy is unnecessary. Attributional LCA, as reflected in how the conventional models like process- and input-output (IO)-based LCA have been applied, is simply a linear consequential modeling that establishes cause and effect through product supply chain. This is how economists see IO analysis, namely, a linear model based on Leontief production functions. There are other consequential and causal models, such as computable general equilibrium (CGE) and system dynamics (SD), that may have different production functions or focus on other aspects of the economy. These models have been increasingly integrated into LCA to estimate the environmental effects, impacts, or consequences of products, which is at the core of LCA. I further argue that as a field, we may be better off eliminating both terms: attributional fails to capture the essence of LCA and consequential is redundant. Likewise, economists did not call IO attributional and CGE consequential because both are consequential models, nor did they use the term consequential as that would be stating the obvious.

Results and discussion

I suggest LCA be unified around its goal to support decision-making, which requires estimating the impact of changes associated with a decision versus that without it (the counterfactual). This is the basic methodology adopted in many other fields. LCA then becomes an overarching framework that encompasses a suite of models, including our conventional IO/process-based LCA, to support different levels of decision-making related to products. Which distinguishes LCA from other fields of study is the focus on product systems. I also discuss, for the linear IO/process-based models, under what circumstances their estimates of the existing systems as an approximation of changes may be meaningful or misleading for decision-making. I further touch upon the importance of understanding the counterfactual, which has been largely neglected in LCA literature.

Recommendations

For an LCA to support decision-making, (1) make explicit what the potential changes are and clearly define the scale of change and (2) derive range estimates to capture the high uncertainties in modeling complex systems and be willing to admit inconclusiveness. For decisions with potentially large impacts across sectors, a multi-model approach may be helpful.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anex R, Lifset R (2014) Life cycle assessment: different models for different purposes. J Ind Ecol 18:321–323CrossRef Anex R, Lifset R (2014) Life cycle assessment: different models for different purposes. J Ind Ecol 18:321–323CrossRef
Zurück zum Zitat Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783CrossRef Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783CrossRef
Zurück zum Zitat Cucurachi S, Yang Y, Bergesen JD, Qin Y, Suh S (2016) Challenges in assessing the environmental consequences of dietary changes. Environ Syst Decis 36:217–219CrossRef Cucurachi S, Yang Y, Bergesen JD, Qin Y, Suh S (2016) Challenges in assessing the environmental consequences of dietary changes. Environ Syst Decis 36:217–219CrossRef
Zurück zum Zitat Davis C, Nikolić I, Dijkema GPJ (2009) Integration of life cycle assessment into agent-based modeling. J Ind Ecol 13:306–325CrossRef Davis C, Nikolić I, Dijkema GPJ (2009) Integration of life cycle assessment into agent-based modeling. J Ind Ecol 13:306–325CrossRef
Zurück zum Zitat Dervis K, Dervis K (1982) General equilibrium models for development policy. A World Bank research publication, Washington, DC Dervis K, Dervis K (1982) General equilibrium models for development policy. A World Bank research publication, Washington, DC
Zurück zum Zitat Dorfman R, Samuelson P, Solow R (1987) Linear programming and economic analysis. Dover Publications, New York Dorfman R, Samuelson P, Solow R (1987) Linear programming and economic analysis. Dover Publications, New York
Zurück zum Zitat Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453CrossRef Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453CrossRef
Zurück zum Zitat Ekvall T, Tillman A, Molander S (2005) Normative ethics and methodology for life cycle assessment. J Clean Prod 13:1225–1234CrossRef Ekvall T, Tillman A, Molander S (2005) Normative ethics and methodology for life cycle assessment. J Clean Prod 13:1225–1234CrossRef
Zurück zum Zitat Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRef Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRef
Zurück zum Zitat Farrell A, Plevin R, Turner B, Jones AD, O'Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRef Farrell A, Plevin R, Turner B, Jones AD, O'Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRef
Zurück zum Zitat Ferng J-J (2009) Applying input–output analysis to scenario analysis of ecological footprints. Ecol Econ 69:345–354CrossRef Ferng J-J (2009) Applying input–output analysis to scenario analysis of ecological footprints. Ecol Econ 69:345–354CrossRef
Zurück zum Zitat Finnveden G, Hauschild M, Ekvall T et al (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRef Finnveden G, Hauschild M, Ekvall T et al (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRef
Zurück zum Zitat Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517CrossRef Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517CrossRef
Zurück zum Zitat Guinée JB, Cucurachi S, Henriksson PJG, Heijungs R (2018) Digesting the alphabet soup of LCA. Int J Life Cycle Assess 23:1507–1511CrossRef Guinée JB, Cucurachi S, Henriksson PJG, Heijungs R (2018) Digesting the alphabet soup of LCA. Int J Life Cycle Assess 23:1507–1511CrossRef
Zurück zum Zitat Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Pub, DordrechtCrossRef Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Pub, DordrechtCrossRef
Zurück zum Zitat Knops JMH, Bradley KL (2009) Soil carbon and nitrogen accumulation and vertical distribution across a 74-year chronosequence. Soil Sci Soc Am J 73:2096CrossRef Knops JMH, Bradley KL (2009) Soil carbon and nitrogen accumulation and vertical distribution across a 74-year chronosequence. Soil Sci Soc Am J 73:2096CrossRef
Zurück zum Zitat Koponen K, Soimakallio S (2015) Foregone carbon sequestration due to land occupation—the case of agro-bioenergy in Finland. Int J Life Cycle Assess 20:1544–1556CrossRef Koponen K, Soimakallio S (2015) Foregone carbon sequestration due to land occupation—the case of agro-bioenergy in Finland. Int J Life Cycle Assess 20:1544–1556CrossRef
Zurück zum Zitat Koponen K, Soimakallio S, Kline KL, Cowie A, Brandão M (2018) Quantifying the climate effects of bioenergy – choice of reference system. Renew Sust Energ Rev 81:2271–2280CrossRef Koponen K, Soimakallio S, Kline KL, Cowie A, Brandão M (2018) Quantifying the climate effects of bioenergy – choice of reference system. Renew Sust Energ Rev 81:2271–2280CrossRef
Zurück zum Zitat Manski CF (2013) Public policy in an uncertain world: analysis and decisions. Harvard University Press Manski CF (2013) Public policy in an uncertain world: analysis and decisions. Harvard University Press
Zurück zum Zitat Marvuglia A, Benetto E, Rege S, Jury C (2013) Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sust Energ Rev 25:768–781CrossRef Marvuglia A, Benetto E, Rege S, Jury C (2013) Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sust Energ Rev 25:768–781CrossRef
Zurück zum Zitat Miller R, Blair P (2009) Input-output analysis: foundations and extensions. Cambridge University Press, Cambridge, EnglandCrossRef Miller R, Blair P (2009) Input-output analysis: foundations and extensions. Cambridge University Press, Cambridge, EnglandCrossRef
Zurück zum Zitat Otto FEL, van Oldenborgh GJ, Eden J, Stott PA, Karoly DJ, Allen MR (2016) The attribution question. Nat Clim Chang 6:813–816CrossRef Otto FEL, van Oldenborgh GJ, Eden J, Stott PA, Karoly DJ, Allen MR (2016) The attribution question. Nat Clim Chang 6:813–816CrossRef
Zurück zum Zitat Plevin R, Jones A, Torn M, Gibbs H (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021CrossRef Plevin R, Jones A, Torn M, Gibbs H (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021CrossRef
Zurück zum Zitat Plevin RJ (2017) Assessing the climate effects of biofuels using integrated assessment models, Part I: Methodological considerations: assessing biofuels’ climate effects-methods. J Ind Ecol 21:1478–1487CrossRef Plevin RJ (2017) Assessing the climate effects of biofuels using integrated assessment models, Part I: Methodological considerations: assessing biofuels’ climate effects-methods. J Ind Ecol 21:1478–1487CrossRef
Zurück zum Zitat Qin Z, Canter CE, Cai H (2017) Toward life cycle analysis on land use change and climate impacts from bioenergy production: a review. In: Qin Z, Mishra U, Hastings A (eds) Geophysical monograph series. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 63–82 Qin Z, Canter CE, Cai H (2017) Toward life cycle analysis on land use change and climate impacts from bioenergy production: a review. In: Qin Z, Mishra U, Hastings A (eds) Geophysical monograph series. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 63–82
Zurück zum Zitat Robertson GP, Hamilton SK, Barham BL et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356:eaal2324 Robertson GP, Hamilton SK, Barham BL et al (2017) Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356:eaal2324
Zurück zum Zitat Rose A (1995) Input-output economics and computable general equilibrium models. Struct Change Econ Dyn 6:295–304CrossRef Rose A (1995) Input-output economics and computable general equilibrium models. Struct Change Econ Dyn 6:295–304CrossRef
Zurück zum Zitat Schlesinger WH (2018) Are wood pellets a green fuel? Science 359:1328–1329CrossRef Schlesinger WH (2018) Are wood pellets a green fuel? Science 359:1328–1329CrossRef
Zurück zum Zitat Searchinger T, Edwards R, Mulligan D, Heimlich R, Plevin R (2015) Do biofuel policies seek to cut emissions by cutting food? Science 347:1420–1422CrossRef Searchinger T, Edwards R, Mulligan D, Heimlich R, Plevin R (2015) Do biofuel policies seek to cut emissions by cutting food? Science 347:1420–1422CrossRef
Zurück zum Zitat Searchinger T, Heimlich R, Houghton R et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRef Searchinger T, Heimlich R, Houghton R et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRef
Zurück zum Zitat Sen A (2011) The idea of justice. Harvard University Press Sen A (2011) The idea of justice. Harvard University Press
Zurück zum Zitat Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, de Vries W, Vermeulen SJ, Herrero M, Carlson KM, Jonell M, Troell M, DeClerck F, Gordon LJ, Zurayk R, Scarborough P, Rayner M, Loken B, Fanzo J, Godfray HCJ, Tilman D, Rockström J, Willett W (2018) Options for keeping the food system within environmental limits. Nature 562:519–525CrossRef Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, de Vries W, Vermeulen SJ, Herrero M, Carlson KM, Jonell M, Troell M, DeClerck F, Gordon LJ, Zurayk R, Scarborough P, Rayner M, Loken B, Fanzo J, Godfray HCJ, Tilman D, Rockström J, Willett W (2018) Options for keeping the food system within environmental limits. Nature 562:519–525CrossRef
Zurück zum Zitat Stanford (2013) Changing the game?: emissions and market implications of new natural gas supplies. Stanford University, Stanford, CA Stanford (2013) Changing the game?: emissions and market implications of new natural gas supplies. Stanford University, Stanford, CA
Zurück zum Zitat Stasinopoulos P, Compston P, Newell B, Jones HM (2012) A system dynamics approach in LCA to account for temporal effects—a consequential energy LCI of car body-in-whites. Int J Life Cycle Assess 17:199–207CrossRef Stasinopoulos P, Compston P, Newell B, Jones HM (2012) A system dynamics approach in LCA to account for temporal effects—a consequential energy LCI of car body-in-whites. Int J Life Cycle Assess 17:199–207CrossRef
Zurück zum Zitat Suh S, Heijungs R (2007) Power series expansion and structural analysis for life cycle assessment. Int J Life Cycle Assess 12:381–390CrossRef Suh S, Heijungs R (2007) Power series expansion and structural analysis for life cycle assessment. Int J Life Cycle Assess 12:381–390CrossRef
Zurück zum Zitat Suh S, Yang Y (2014) On the uncanny capabilities of consequential LCA. Int J Life Cycle Assess 19:1179–1184CrossRef Suh S, Yang Y (2014) On the uncanny capabilities of consequential LCA. Int J Life Cycle Assess 19:1179–1184CrossRef
Zurück zum Zitat Tillman A (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20:113–123CrossRef Tillman A (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20:113–123CrossRef
Zurück zum Zitat Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522CrossRef Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522CrossRef
Zurück zum Zitat Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600CrossRef Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600CrossRef
Zurück zum Zitat Tilman D, Socolow R, Foley J et al (2009) Beneficial biofuels--the food, energy, and environment trilemma. Science 325:270–271CrossRef Tilman D, Socolow R, Foley J et al (2009) Beneficial biofuels--the food, energy, and environment trilemma. Science 325:270–271CrossRef
Zurück zum Zitat Weidema PB (2003) Market information in life cycle assessment. Danish Environmental Protection Agency, Copenhagen Weidema PB (2003) Market information in life cycle assessment. Danish Environmental Protection Agency, Copenhagen
Zurück zum Zitat West GR (1995) Comparison of input–output, input–output+ econometric and computable general equilibrium impact models at the regional level. Econ Syst Res 7:209–227CrossRef West GR (1995) Comparison of input–output, input–output+ econometric and computable general equilibrium impact models at the regional level. Econ Syst Res 7:209–227CrossRef
Zurück zum Zitat Wiedmann T, Minx J (2008) A definition of ‘carbon footprint.’ In: Ecological economics research trends. NOva Science Publishers, Hauppauge NY, USA, pp 1–11 Wiedmann T, Minx J (2008) A definition of ‘carbon footprint.’ In: Ecological economics research trends. NOva Science Publishers, Hauppauge NY, USA, pp 1–11
Zurück zum Zitat Yang Y (2016) Two sides of the same coin: consequential life cycle assessment based on the attributional framework. J Clean Prod 127:274–281CrossRef Yang Y (2016) Two sides of the same coin: consequential life cycle assessment based on the attributional framework. J Clean Prod 127:274–281CrossRef
Zurück zum Zitat Yang Y, Campbell JE (2017) Improving attributional life cycle assessment for decision support: the case of local food in sustainable design. J Clean Prod 145:361–366CrossRef Yang Y, Campbell JE (2017) Improving attributional life cycle assessment for decision support: the case of local food in sustainable design. J Clean Prod 145:361–366CrossRef
Zurück zum Zitat Yang Y, Heijungs R (2018) On the use of different models for consequential life cycle assessment. Int J Life Cycle Assess 23:751–758CrossRef Yang Y, Heijungs R (2018) On the use of different models for consequential life cycle assessment. Int J Life Cycle Assess 23:751–758CrossRef
Zurück zum Zitat Yang Y, Heijungs R (2019) Moving from completing system boundary to more realistic modeling of the economy in life cycle assessment. Int J Life Cycle Assess 24:211–218CrossRef Yang Y, Heijungs R (2019) Moving from completing system boundary to more realistic modeling of the economy in life cycle assessment. Int J Life Cycle Assess 24:211–218CrossRef
Zurück zum Zitat Yang Y, Tilman D, Lehman C, Trost JJ (2018) Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat Sustain 1:686–692CrossRef Yang Y, Tilman D, Lehman C, Trost JJ (2018) Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat Sustain 1:686–692CrossRef
Zurück zum Zitat Zink T, Geyer R, Startz R (2016) A market-based framework for quantifying displaced production from recycling or reuse. J Ind Ecol 20:719–729CrossRef Zink T, Geyer R, Startz R (2016) A market-based framework for quantifying displaced production from recycling or reuse. J Ind Ecol 20:719–729CrossRef
Metadaten
Titel
A unified framework of life cycle assessment
verfasst von
Yi Yang
Publikationsdatum
04.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 4/2019
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-019-01595-w

Weitere Artikel der Ausgabe 4/2019

The International Journal of Life Cycle Assessment 4/2019 Zur Ausgabe