Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 9/2019

21.08.2019 | Original Article

Ultrasound simulation with deformable and patient-specific scatterer maps

verfasst von: Rastislav Starkov, Lin Zhang, Michael Bajka, Christine Tanner, Orcun Goksel

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Ray-tracing-based simulations model ultrasound (US) interactions with a custom geometric anatomical model, where US texture can be emulated via real-time point-spread function convolutions of a tissue scatterer representation. Such scatterer representations for realistic appearance are difficult to parameterize or model manually and do not respond to volumetric deformations such as those caused with tissue compression by the probe. Herein we utilize brightness mode (B-mode) estimated scatterer maps for ray tracing and propose to enhance the realism of ray-tracing-based simulations by incorporating dynamic speckle patterns that change compliant with tissue deformation.

Methods

In this work, we realistically simulate US texture deformations in the scatterer domain via back-projection of ray segments into a nominal state before sampling during simulation runtime. We estimate scatterer maps from background in vivo images using a pretrained generative adversarial network.

Results

We demonstrated our proposed scatterer estimation and runtime background fusion method on simulated transvaginal US scans of detailed surface-based foetal models. We show the viability of modelling deformations in the scatterer domain at interactive frame rates of 28 frames per second. A quantitative and a qualitative evaluations indicated improved realism in comparison to the state of the art.

Conclusions

Transferring a background image in a scatterer representation enables us to capture anatomical content in a physical space, in which deformations can be incorporated physically consistently before convolving with a US point-spread function during simulation runtime. This then uses the same imaging model on both the background and the hand-crafted models leading to a consistent and seamless compounding of contents in the scatterer space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Provided as supplementary material.
 
Literatur
1.
Zurück zum Zitat Maul H, Scharf A, Baier P, Wüstemann M, Günter H, Gebauer G, Sohn C (2004) Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems. Ultrasound Obstet Gynecol 24(5):581–585CrossRefPubMed Maul H, Scharf A, Baier P, Wüstemann M, Günter H, Gebauer G, Sohn C (2004) Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems. Ultrasound Obstet Gynecol 24(5):581–585CrossRefPubMed
2.
Zurück zum Zitat Ehricke H (1998) SONOSim3D: a multimedia system for sonography simulation and education with an extensible case database. Eur J Ultrasound 7(3):225–300CrossRefPubMed Ehricke H (1998) SONOSim3D: a multimedia system for sonography simulation and education with an extensible case database. Eur J Ultrasound 7(3):225–300CrossRefPubMed
3.
Zurück zum Zitat Arkhurst W, Pommert A, Richter E, Frederking H, Kim S-I, Schubert R, Höhne KH (2001) A virtual reality training system for pediatric sonography. Proc Int Congr Ser 1230:483–487CrossRef Arkhurst W, Pommert A, Richter E, Frederking H, Kim S-I, Schubert R, Höhne KH (2001) A virtual reality training system for pediatric sonography. Proc Int Congr Ser 1230:483–487CrossRef
4.
Zurück zum Zitat Tahmasebi AM, Abolmaesumi P, Hashtrudi-Zaad K (2007) A haptic-based ultrasound training/examination system (HUTES). In: Procedings of IEEE international conference on robotics and automation (ICRA), pp 3130–3131 Tahmasebi AM, Abolmaesumi P, Hashtrudi-Zaad K (2007) A haptic-based ultrasound training/examination system (HUTES). In: Procedings of IEEE international conference on robotics and automation (ICRA), pp 3130–3131
5.
Zurück zum Zitat Sclaverano S, Chevreau G, Vadcard L, Mozer P, Troccaz J (2009) BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy. Stud Health Technol Inform 142:301–306PubMed Sclaverano S, Chevreau G, Vadcard L, Mozer P, Troccaz J (2009) BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy. Stud Health Technol Inform 142:301–306PubMed
6.
Zurück zum Zitat Goksel O, Salcudean SE (2009) B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans Med Imaging 28(11):1657–1669CrossRefPubMed Goksel O, Salcudean SE (2009) B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans Med Imaging 28(11):1657–1669CrossRefPubMed
7.
Zurück zum Zitat Reichl T, Passenger J, Acosta O, Salvado O (2009) Ultrasound goes GPU: real-time simulation using CUDA. In: Proceedings of SPIE medical imaging, p 726116 Reichl T, Passenger J, Acosta O, Salvado O (2009) Ultrasound goes GPU: real-time simulation using CUDA. In: Proceedings of SPIE medical imaging, p 726116
8.
Zurück zum Zitat Gao H, Choi HF, Claus P, Boonen S, Jaecques S, Van Lenthe GH, Van der Perre G, Lauriks W, D’Hooge J (2009) A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 56(2):404–409CrossRefPubMed Gao H, Choi HF, Claus P, Boonen S, Jaecques S, Van Lenthe GH, Van der Perre G, Lauriks W, D’Hooge J (2009) A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 56(2):404–409CrossRefPubMed
9.
Zurück zum Zitat Bürger B, Bettinghausen S, Radle M, Hesser J (2013) Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans Med Imaging 32(3):609–618CrossRefPubMed Bürger B, Bettinghausen S, Radle M, Hesser J (2013) Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans Med Imaging 32(3):609–618CrossRefPubMed
10.
Zurück zum Zitat Mattausch O, Goksel O (2016) Monte-Carlo ray tracing for realistic ultrasound training simulation. In: Proceedings of the eurographics workshop visual computing biomedicine (EG VCBM), pp 173–181 Mattausch O, Goksel O (2016) Monte-Carlo ray tracing for realistic ultrasound training simulation. In: Proceedings of the eurographics workshop visual computing biomedicine (EG VCBM), pp 173–181
11.
Zurück zum Zitat Mattausch O, Makhinya M, Goksel O (2018) Realistic ultrasound simulation of complex surface models using interactive Monte-Carlo path tracing. Comput Graph Forum 37(1):202–213CrossRef Mattausch O, Makhinya M, Goksel O (2018) Realistic ultrasound simulation of complex surface models using interactive Monte-Carlo path tracing. Comput Graph Forum 37(1):202–213CrossRef
12.
Zurück zum Zitat Tanner C, Starkov R, Bajka M, Goksel O (2018) Framework for fusion of data- and model-based approaches for ultrasound simulation. In: Proceedings of MICCAI, pp 332–339CrossRef Tanner C, Starkov R, Bajka M, Goksel O (2018) Framework for fusion of data- and model-based approaches for ultrasound simulation. In: Proceedings of MICCAI, pp 332–339CrossRef
13.
Zurück zum Zitat Flach B, Makhinya M, Goksel O (2016) PURE: panoramic ultrasound reconstruction by seamless stitching of volumes. In: Proceedings of MICCAI workshop simulation and synthesis in medical imaging (SASHIMI), pp 75–84CrossRef Flach B, Makhinya M, Goksel O (2016) PURE: panoramic ultrasound reconstruction by seamless stitching of volumes. In: Proceedings of MICCAI workshop simulation and synthesis in medical imaging (SASHIMI), pp 75–84CrossRef
14.
Zurück zum Zitat Mattausch O, Goksel O (2018) Image-based reconstruction of tissue scatterers using beam steering for ultrasound simulation. IEEE Trans Med Imag 37(3):767–780CrossRef Mattausch O, Goksel O (2018) Image-based reconstruction of tissue scatterers using beam steering for ultrasound simulation. IEEE Trans Med Imag 37(3):767–780CrossRef
15.
Zurück zum Zitat Al Bahou A, Tanner C, Goksel O (2019) SCATGAN for reconstruction of ultrasound scatterers using generative adversarial networks. In: Proceedings of IEEE international symposium Biomedical Imaging (ISBI), accepted (also arXiv:1902.00469) Al Bahou A, Tanner C, Goksel O (2019) SCATGAN for reconstruction of ultrasound scatterers using generative adversarial networks. In: Proceedings of IEEE international symposium Biomedical Imaging (ISBI), accepted (also arXiv:​1902.​00469)
16.
Zurück zum Zitat Starkov R, Tanner C, Bajka M, Goksel O (2019) Ultrasound simulation with animated anatomical models and on-the-fly fusion with real images via path-tracing. Comput Graph 82:44–52CrossRef Starkov R, Tanner C, Bajka M, Goksel O (2019) Ultrasound simulation with animated anatomical models and on-the-fly fusion with real images via path-tracing. Comput Graph 82:44–52CrossRef
17.
Zurück zum Zitat Kajiya JT (1986) The rendering equation. ACM SIGGRAPH Comput Graph 20(4):143–150CrossRef Kajiya JT (1986) The rendering equation. ACM SIGGRAPH Comput Graph 20(4):143–150CrossRef
18.
Zurück zum Zitat Mattausch O, Ren E, Bajka M, Vanhoey K, Goksel O (2017) Comparison of texture synthesis methods for content generation in ultrasound simulation for training. In: Proceedings of SPIE Med Imaging, p 1013523 Mattausch O, Ren E, Bajka M, Vanhoey K, Goksel O (2017) Comparison of texture synthesis methods for content generation in ultrasound simulation for training. In: Proceedings of SPIE Med Imaging, p 1013523
19.
Zurück zum Zitat Bamber JC, Dickinson RJ (1980) Ultrasonic B-scanning: a computer simulation. Phys Med Biol 25(3):463CrossRefPubMed Bamber JC, Dickinson RJ (1980) Ultrasonic B-scanning: a computer simulation. Phys Med Biol 25(3):463CrossRefPubMed
20.
Zurück zum Zitat Jensen J (2004) Simulation of advanced ultrasound systems using field II. Proc IEEE Int Symp Biomed Imaging 1:636–639 Jensen J (2004) Simulation of advanced ultrasound systems using field II. Proc IEEE Int Symp Biomed Imaging 1:636–639
21.
Zurück zum Zitat Mattausch O, Goksel O (2015) Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation. In: Proceedings of IEEE engineering medicine and biology conference (EMBC), pp 6350–6353 Mattausch O, Goksel O (2015) Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation. In: Proceedings of IEEE engineering medicine and biology conference (EMBC), pp 6350–6353
22.
Zurück zum Zitat Müller M, Stam J, James D, Thürey N (2008) Real time physics: class notes. In: Proceedings of ACM SIGGRAPH classes, pp 88:1–88:90 Müller M, Stam J, James D, Thürey N (2008) Real time physics: class notes. In: Proceedings of ACM SIGGRAPH classes, pp 88:1–88:90
23.
Zurück zum Zitat Petrinec K (2013) Patient-specific interactive ultrasound image simulation with soft-tissue deformation. Ph.D. thesis, University of California Petrinec K (2013) Patient-specific interactive ultrasound image simulation with soft-tissue deformation. Ph.D. thesis, University of California
24.
Zurück zum Zitat Zikic D, Wein W, Khamene A, Clevert D-A, Navab N (2006) Fast deformable registration of 3D-ultrasound data using a variational approach. In: Proceedings of MICCAI, pp 915–923CrossRef Zikic D, Wein W, Khamene A, Clevert D-A, Navab N (2006) Fast deformable registration of 3D-ultrasound data using a variational approach. In: Proceedings of MICCAI, pp 915–923CrossRef
25.
Zurück zum Zitat Virga S, Göbl R, Baust M, Navab N, Hennersperger C (2018) Use the force: deformation correction in robotic 3D ultrasound. Int J Comput Assist Radiol Surg 13(5):619–627CrossRefPubMed Virga S, Göbl R, Baust M, Navab N, Hennersperger C (2018) Use the force: deformation correction in robotic 3D ultrasound. Int J Comput Assist Radiol Surg 13(5):619–627CrossRefPubMed
26.
Zurück zum Zitat Flach B, Makhinya M, Goksel O (2016) Model-based compensation of tissue deformation during data acquisition for interpolative ultrasound simulation. In: Proceedings of IEEE international symposium biomedical imaging (ISBI) Flach B, Makhinya M, Goksel O (2016) Model-based compensation of tissue deformation during data acquisition for interpolative ultrasound simulation. In: Proceedings of IEEE international symposium biomedical imaging (ISBI)
27.
Zurück zum Zitat Selmi S-Y, Promayon E, Sarrazin J, Troccaz J (2014) 3D interactive ultrasound image deformation for realistic prostate biopsy simulation. In: Proceedings of biomedical simulation, pp 122–130CrossRef Selmi S-Y, Promayon E, Sarrazin J, Troccaz J (2014) 3D interactive ultrasound image deformation for realistic prostate biopsy simulation. In: Proceedings of biomedical simulation, pp 122–130CrossRef
28.
Zurück zum Zitat Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503CrossRef Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503CrossRef
29.
Zurück zum Zitat Clark JH (1976) Hierarchical geometric models for visible surface algorithms. Commun ACM 19(10):547–554CrossRef Clark JH (1976) Hierarchical geometric models for visible surface algorithms. Commun ACM 19(10):547–554CrossRef
30.
Zurück zum Zitat Stich M, Friedrich H, Dietrich A (2009) Spatial splits in bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 7–13 Stich M, Friedrich H, Dietrich A (2009) Spatial splits in bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 7–13
32.
Zurück zum Zitat Karras T, Aila T (2013) Fast parallel construction of high-quality bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 89–99 Karras T, Aila T (2013) Fast parallel construction of high-quality bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 89–99
33.
Zurück zum Zitat Lext J, Akenine-Möller T (2001) Towards rapid reconstruction for animated ray tracing. In: Proceedings of eurograph short present, pp 311–318 Lext J, Akenine-Möller T (2001) Towards rapid reconstruction for animated ray tracing. In: Proceedings of eurograph short present, pp 311–318
34.
Zurück zum Zitat Loughna P, Chitty L, Evans T, Chudleigh T (2009) Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound 17(3):160–166CrossRef Loughna P, Chitty L, Evans T, Chudleigh T (2009) Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound 17(3):160–166CrossRef
35.
Zurück zum Zitat Rubin SM, Whitted T (1980) A 3-dimensional representation for fast rendering of complex scenes. ACM SIGGRAPH Comput Graph 14(3):110–116CrossRef Rubin SM, Whitted T (1980) A 3-dimensional representation for fast rendering of complex scenes. ACM SIGGRAPH Comput Graph 14(3):110–116CrossRef
36.
Zurück zum Zitat Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, Berlin, pp 283–321 Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, Berlin, pp 283–321
Metadaten
Titel
Ultrasound simulation with deformable and patient-specific scatterer maps
verfasst von
Rastislav Starkov
Lin Zhang
Michael Bajka
Christine Tanner
Orcun Goksel
Publikationsdatum
21.08.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 9/2019
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02054-5

Weitere Artikel der Ausgabe 9/2019

International Journal of Computer Assisted Radiology and Surgery 9/2019 Zur Ausgabe

Premium Partner