Skip to main content
Erschienen in: Swarm Intelligence 1/2015

01.03.2015

The TAM: abstracting complex tasks in swarm robotics research

verfasst von: Arne Brutschy, Lorenzo Garattoni, Manuele Brambilla, Gianpiero Francesca, Giovanni Pini, Marco Dorigo, Mauro Birattari

Erschienen in: Swarm Intelligence | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Research in swarm robotics focuses mostly on how robots interact and cooperate to perform tasks, rather than on the details of task execution. As a consequence, researchers often consider abstract tasks in their experimental work. For example, foraging is often studied without physically handling objects: the retrieval of an object from a source to a destination is abstracted into a trip between the two locations—no object is physically transported. Despite being commonly used, so far task abstraction has only been implemented in an ad hoc fashion. In this paper, we propose a new approach to abstracting complex tasks in swarm robotics research. This approach is based on a physical device called the “task abstraction module” (TAM) that abstracts single-robot tasks to be performed by an e-puck robot. A complex multi-robot task can be abstracted using a group of TAMs by first modeling the task as the set of its constituent single-robot subtasks and then abstracting each subtask with a TAM. We present a collection of tools for modeling complex tasks, and a framework for controlling a group of TAMs such that the behavior of the group implements the model of the task. The TAM enables research on cooperative behaviors and complex tasks with simple, cost-effective robots such as the e-puck—research that would be difficult and costly to conduct using specialized robots or ad hoc task abstraction. We demonstrate how to abstract a complex task with multiple TAMs in an example scenario involving a swarm of e-puck robots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The e-puck is a small, round mobile robot designed for research purposes by Mondada et al. (2009).
 
5
It should be noted that, although the semantics of activity diagrams is loosely based on Petri nets, activity diagrams are unsuitable for simulation because “the rules for activity execution are not clearly explained and defined in the UML specification” (Spiteri Staines 2010).
 
6
By convention, the places of a Petri net can be omitted in order to visualize better the structure of the net (Petri and Reisig 2008). The full version of the Petri net and instructions for simulating it can be found in the supplementary online material (Brutschy et al. 2013).
 
9
See http://​youtu.​be/​M2nn1X9Xlps for a movie describing the swarm and its task.
 
Literatur
Zurück zum Zitat Acerbi, A., Marocco, D., & Nolfi, S. (2007). Social facilitation on the development of foraging behaviors in a population of autonomous robots. In F. Almeida e Costa, L. Rocha, E. Costa, I. Harvey, & A. Coutinho (Eds.), Advances in artificial life (Vol. 4648, pp. 625–634)., Lecture notes in computer science Berlin: Springer.CrossRef Acerbi, A., Marocco, D., & Nolfi, S. (2007). Social facilitation on the development of foraging behaviors in a population of autonomous robots. In F. Almeida e Costa, L. Rocha, E. Costa, I. Harvey, & A. Coutinho (Eds.), Advances in artificial life (Vol. 4648, pp. 625–634)., Lecture notes in computer science Berlin: Springer.CrossRef
Zurück zum Zitat Banzi, M. (2008). Getting started with Arduino. Sebastopol, CA: O’Reilly Media. Banzi, M. (2008). Getting started with Arduino. Sebastopol, CA: O’Reilly Media.
Zurück zum Zitat Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (Vol. 3342, pp. 1–9)., Lecture notes in computer science Berlin: Springer.CrossRef Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (Vol. 3342, pp. 1–9)., Lecture notes in computer science Berlin: Springer.CrossRef
Zurück zum Zitat Berman, S., Halász, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937.CrossRef Berman, S., Halász, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937.CrossRef
Zurück zum Zitat Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for robot swarms: A design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4), 17:1–17:28. Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for robot swarms: A design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4), 17:1–17:28.
Zurück zum Zitat Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRef Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRef
Zurück zum Zitat Brutschy, A. (2014). The TAM: A device for task abstraction in swarm robotics research. Technical Report TR/IRIDIA/2010-015.005, Belgium: IRIDIA, Université Libre de Bruxelles. Brutschy, A. (2014). The TAM: A device for task abstraction in swarm robotics research. Technical Report TR/IRIDIA/2010-015.005, Belgium: IRIDIA, Université Libre de Bruxelles.
Zurück zum Zitat Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1), 101–125.CrossRef Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1), 101–125.CrossRef
Zurück zum Zitat Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A., et al. (2012). Costs and benefits of behavioral specialization. Robotics and Autonomous Systems, 60(11), 1408–1420.CrossRef Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A., et al. (2012). Costs and benefits of behavioral specialization. Robotics and Autonomous Systems, 60(11), 1408–1420.CrossRef
Zurück zum Zitat Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2011). Self-organized discrimination of resources. PLoS One, 6(5), e19888.CrossRef Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2011). Self-organized discrimination of resources. PLoS One, 6(5), e19888.CrossRef
Zurück zum Zitat Castillo-Cagigal, M., Brutschy, A., Gutiérrez, Á., & Birattari, M. (2014). Temporal task allocation in periodic environments: An approach based on synchronization (Vol. 8667). InProceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 182–193). Lecture Notes in Computer Science Berlin/Heidelberg, Germany: Springer. Castillo-Cagigal, M., Brutschy, A., Gutiérrez, Á., & Birattari, M. (2014). Temporal task allocation in periodic environments: An approach based on synchronization (Vol. 8667). InProceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 182–193). Lecture Notes in Computer Science Berlin/Heidelberg, Germany: Springer.
Zurück zum Zitat Donald, B. R., Jennings, J., & Rus, D. (1997). Information invariants for distributed manipulation. The International Journal of Robotics Research, 16(5), 673–702.CrossRef Donald, B. R., Jennings, J., & Rus, D. (1997). Information invariants for distributed manipulation. The International Journal of Robotics Research, 16(5), 673–702.CrossRef
Zurück zum Zitat Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRef Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRef
Zurück zum Zitat Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.CrossRef Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.CrossRef
Zurück zum Zitat Fontan, M. S., & Matarić, M. J. (1996). A study of territoriality: The role of critical mass in adaptive task division. In P. Maes, M. J. Matarić, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the Fourth International Conference of Simulation of Adaptive Behavior (pp. 553–561). Cambridge, MA: MIT Press. Fontan, M. S., & Matarić, M. J. (1996). A study of territoriality: The role of critical mass in adaptive task division. In P. Maes, M. J. Matarić, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the Fourth International Conference of Simulation of Adaptive Behavior (pp. 553–561). Cambridge, MA: MIT Press.
Zurück zum Zitat Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). An experiment in automatic design of robot swarms: AutoMoDe-Vanilla, EvoStick, and human experts (Vol. 8667). In M. Dorigo, M. Birattari, S. Garnier, H. H. M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 25–37). Lecture Notes in Computer Science, Springer: Berlin/Heidelberg, Germany. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). An experiment in automatic design of robot swarms: AutoMoDe-Vanilla, EvoStick, and human experts (Vol. 8667). In M. Dorigo, M. Birattari, S. Garnier, H. H. M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 25–37). Lecture Notes in Computer Science, Springer: Berlin/Heidelberg, Germany.
Zurück zum Zitat Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014b). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.CrossRef Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014b). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.CrossRef
Zurück zum Zitat Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014). Self-organized aggregation without computation. The International Journal of Robotics Research, 33(8), 1145–1161.CrossRef Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014). Self-organized aggregation without computation. The International Journal of Robotics Research, 33(8), 1145–1161.CrossRef
Zurück zum Zitat Goldberg, D., & Matarić, M. J. (2002). Design and evaluation of robust behavior-based controllers. In T. Balch & L. E. Parker (Eds.), Robot teams: from diversity to polymorphism (pp. 315–344). Natick, MA: A. K. Peters. Goldberg, D., & Matarić, M. J. (2002). Design and evaluation of robust behavior-based controllers. In T. Balch & L. E. Parker (Eds.), Robot teams: from diversity to polymorphism (pp. 315–344). Natick, MA: A. K. Peters.
Zurück zum Zitat Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13.CrossRef Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13.CrossRef
Zurück zum Zitat Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localisation and local communication embodied sensor. Sensors, 11(8), 7545–7563.CrossRef Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localisation and local communication embodied sensor. Sensors, 11(8), 7545–7563.CrossRef
Zurück zum Zitat Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.CrossRefMATH Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.CrossRefMATH
Zurück zum Zitat Jakobi, N., Husbands, A., & P., & A. Harvey, I., (1995). Noise and the reality gap: The use of simulation in evolutionary robotics (Vol. 929). In F. Morán, A. Moreno, J. J. Merelo, & P. Chacón (Eds.), Swarm Robotics (pp. 704–720). Advances in Artificial Life, Springer: Berlin/Heidelberg, Germany. Jakobi, N., Husbands, A., & P., & A. Harvey, I., (1995). Noise and the reality gap: The use of simulation in evolutionary robotics (Vol. 929). In F. Morán, A. Moreno, J. J. Merelo, & P. Chacón (Eds.), Swarm Robotics (pp. 704–720). Advances in Artificial Life, Springer: Berlin/Heidelberg, Germany.
Zurück zum Zitat Kernbach, S., Nepomnyashchikh, V., Kancheva, T., & Kernbach, O. (2012). Specialization and generalization of robotic behavior in swarm energy foraging. Mathematical and Computer Modelling of Dynamical Systems, 18, 131–152.CrossRefMATH Kernbach, S., Nepomnyashchikh, V., Kancheva, T., & Kernbach, O. (2012). Specialization and generalization of robotic behavior in swarm energy foraging. Mathematical and Computer Modelling of Dynamical Systems, 18, 131–152.CrossRefMATH
Zurück zum Zitat Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organized task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84.CrossRef Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organized task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84.CrossRef
Zurück zum Zitat Kube, C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1–2), 85–101.CrossRef Kube, C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1–2), 85–101.CrossRef
Zurück zum Zitat Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.CrossRef Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.CrossRef
Zurück zum Zitat Li, L., Martinoli, A., & Abu-Mostafa, Y. S. (2004). Learning and measuring specialization in collaborative swarm systems. Adaptive Behavior, 12(3–4), 199–212.CrossRef Li, L., Martinoli, A., & Abu-Mostafa, Y. S. (2004). Learning and measuring specialization in collaborative swarm systems. Adaptive Behavior, 12(3–4), 199–212.CrossRef
Zurück zum Zitat Matarić, M. J., Sukhatme, G. S., & Østergaard, E. H. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14, 255–263.CrossRefMATH Matarić, M. J., Sukhatme, G. S., & Østergaard, E. H. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14, 255–263.CrossRefMATH
Zurück zum Zitat Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, et al. (Eds.), Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions (pp. 59–65). IPCB: Instituto Politècnico de Castelo Branco, Portugal. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, et al. (Eds.), Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions (pp. 59–65). IPCB: Instituto Politècnico de Castelo Branco, Portugal.
Zurück zum Zitat Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRef Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRef
Zurück zum Zitat Parker, L. E. (1998). Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation, 14, 220–240.CrossRef Parker, L. E. (1998). Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation, 14, 220–240.CrossRef
Zurück zum Zitat Petri, C. A., & Reisig, W. (2008). Petri net. Scholarpedia, 3(4), 6477.CrossRef Petri, C. A., & Reisig, W. (2008). Petri net. Scholarpedia, 3(4), 6477.CrossRef
Zurück zum Zitat Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.CrossRef Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.CrossRef
Zurück zum Zitat Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., & Dorigo, M. (2011). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.CrossRef Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., & Dorigo, M. (2011). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.CrossRef
Zurück zum Zitat Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., & Birattari, M. (2014). Task partitioning in a robot swarm: Retrieving objects by transferring them directly between sequential sub-tasks. Artificial Life, 20(3), 291–317. Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., & Birattari, M. (2014). Task partitioning in a robot swarm: Retrieving objects by transferring them directly between sequential sub-tasks. Artificial Life, 20(3), 291–317.
Zurück zum Zitat Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013). Task partitioning in a robot swarm: A study on the effect of communication. Swarm Intelligence, 7(2–3), 173–199.CrossRef Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013). Task partitioning in a robot swarm: A study on the effect of communication. Swarm Intelligence, 7(2–3), 173–199.CrossRef
Zurück zum Zitat Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The unified modeling language reference manual (2nd ed.). Upper Saddle River, NJ: Pearson Higher Education. Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The unified modeling language reference manual (2nd ed.). Upper Saddle River, NJ: Pearson Higher Education.
Zurück zum Zitat Sperati, V., Trianni, V., & Nolfi, S. (2008). Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intelligence, 2(2), 73–95.CrossRef Sperati, V., Trianni, V., & Nolfi, S. (2008). Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intelligence, 2(2), 73–95.CrossRef
Zurück zum Zitat Spiteri Staines, A. (2010). Petri nets applications. In Intuitive transformation of UML2 activities into fundamental modeling concept petri nets and colored petri nets (pp. 673–694). Rijeka, Croatia: InTech Europe. Spiteri Staines, A. (2010). Petri nets applications. In Intuitive transformation of UML2 activities into fundamental modeling concept petri nets and colored petri nets (pp. 673–694). Rijeka, Croatia: InTech Europe.
Zurück zum Zitat Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., & Birattari, M. (2013). IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, Belgium: IRIDIA, Université Libre de Bruxelles. Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., & Birattari, M. (2013). IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, Belgium: IRIDIA, Université Libre de Bruxelles.
Metadaten
Titel
The TAM: abstracting complex tasks in swarm robotics research
verfasst von
Arne Brutschy
Lorenzo Garattoni
Manuele Brambilla
Gianpiero Francesca
Giovanni Pini
Marco Dorigo
Mauro Birattari
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Swarm Intelligence / Ausgabe 1/2015
Print ISSN: 1935-3812
Elektronische ISSN: 1935-3820
DOI
https://doi.org/10.1007/s11721-014-0102-6