Skip to main content
Erschienen in: Journal of Coatings Technology and Research 1/2019

05.09.2018

Catalyzed non-isocyanate polyurethane (NIPU) coatings from bio-based poly(cyclic carbonates)

verfasst von: Arvin Z. Yu, Raul A. Setien, Jonas M. Sahouani, James Docken Jr, Dean C. Webster

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Formulations of bio-based poly(cyclic carbonates) and amines using cooperative catalysis were studied to produce non-isocyanate polyurethanes (NIPUs). Concerns on the use of isocyanates as starting materials for polyurethanes (PUs) have risen due to their effects on human health after exposure and also because their synthesis involves the use of phosgene. Polyurethanes are highly versatile materials used in widespread industries such as automotive, building, construction, and packaging. They have also been used as flexible and rigid foams, adhesives, coatings, thermoplastic, or thermoset materials. Traditionally, PUs are synthesized from polyols and polyisocyanates. In order to circumvent the concerns, much research has been devoted to exploring alternative approaches to the synthesis of PUs. NIPU synthesis using cyclic carbonates and amines has gained popularity as one of the new approaches. In this study, novel bio-based resins were synthesized by converting epoxidized sucrose soyate into carbonated sucrose soyate (CSS) under supercritical conditions. Initial studies have shown promise in systems where CSS is crosslinked with multifunctional amines generating coatings with good solvent resistance. This work focused on studying the effect of catalysts and developing formulations of bio-based non-isocyanate polyurethane coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Demharter, A, “Polyurethane Rigid Foam, A Proven Thermal Insulating Material for Applications Between + 130 C and − 196 C.” Cryogenics, 38 (1) 113–117 (1998)CrossRef Demharter, A, “Polyurethane Rigid Foam, A Proven Thermal Insulating Material for Applications Between + 130 C and − 196 C.” Cryogenics, 38 (1) 113–117 (1998)CrossRef
2.
Zurück zum Zitat Krol, P, “Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers.” Prog. Mater. Sci., 52 (6) 915–1015 (2007)CrossRef Krol, P, “Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers.” Prog. Mater. Sci., 52 (6) 915–1015 (2007)CrossRef
3.
Zurück zum Zitat Santerre, JP, Woodhouse, K, Laroche, G, Labow, RS, “Understanding the Biodegradation of Polyurethanes: From Classical Implants to Tissue Engineering Materials.” Biomaterials, 26 (35) 7457–7470 (2005)CrossRef Santerre, JP, Woodhouse, K, Laroche, G, Labow, RS, “Understanding the Biodegradation of Polyurethanes: From Classical Implants to Tissue Engineering Materials.” Biomaterials, 26 (35) 7457–7470 (2005)CrossRef
4.
Zurück zum Zitat Zdrahala, RJ, Zdrahala, IJ, “Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future.” J. Biomater. Appl., 14 (1) 67–90 (1999)CrossRef Zdrahala, RJ, Zdrahala, IJ, “Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future.” J. Biomater. Appl., 14 (1) 67–90 (1999)CrossRef
5.
Zurück zum Zitat Verschoor, L, Verschoor, AH, “Nonoccupational and Occupational Exposure to Isocyanates.” Curr. Opin. Pulm. Med., 20 (2) 199–204 (2014)CrossRef Verschoor, L, Verschoor, AH, “Nonoccupational and Occupational Exposure to Isocyanates.” Curr. Opin. Pulm. Med., 20 (2) 199–204 (2014)CrossRef
6.
Zurück zum Zitat Lockey, JE, Redlich, CA, Streicher, R, Pfahles-Hutchens, A, Hakkinen, PJ, Ellison, GL, Harber, P, Utell, M, Holland, J, Comai, A, “Isocyanates and Human Health: Multi-stakeholder Information Needs and Research Priorities.” J. Occup. Environ. Med. Am. Coll. Occup. Environ. Med., 57 (1) 44 (2015)CrossRef Lockey, JE, Redlich, CA, Streicher, R, Pfahles-Hutchens, A, Hakkinen, PJ, Ellison, GL, Harber, P, Utell, M, Holland, J, Comai, A, “Isocyanates and Human Health: Multi-stakeholder Information Needs and Research Priorities.” J. Occup. Environ. Med. Am. Coll. Occup. Environ. Med., 57 (1) 44 (2015)CrossRef
7.
Zurück zum Zitat Rokicki, G, Parzuchowski, PG, Mazurek, M, “Non-isocyanate Polyurethanes: Synthesis, Properties, and Applications.” Polym. Adv. Technol., 26 (7) 707–761 (2015)CrossRef Rokicki, G, Parzuchowski, PG, Mazurek, M, “Non-isocyanate Polyurethanes: Synthesis, Properties, and Applications.” Polym. Adv. Technol., 26 (7) 707–761 (2015)CrossRef
8.
Zurück zum Zitat Figovsky, OL, Leykin, AD, Shapovalov, LL, “Non-isocyanate Polyurethanes-Yesterday, Today and Tomorrow.” Int. Sci. J. Altern. Energy Ecol., 3–4 95–108 (2016)CrossRef Figovsky, OL, Leykin, AD, Shapovalov, LL, “Non-isocyanate Polyurethanes-Yesterday, Today and Tomorrow.” Int. Sci. J. Altern. Energy Ecol., 3–4 95–108 (2016)CrossRef
9.
Zurück zum Zitat Maisonneuve, L, Lamarzelle, OA, Rix, E, Grau, E, Cramail, H, “Isocyanate-Free Routes to Polyurethanes and Poly (Hydroxy Urethane)s.” Chem. Rev., 115 (22) 12407–12439 (2015)CrossRef Maisonneuve, L, Lamarzelle, OA, Rix, E, Grau, E, Cramail, H, “Isocyanate-Free Routes to Polyurethanes and Poly (Hydroxy Urethane)s.” Chem. Rev., 115 (22) 12407–12439 (2015)CrossRef
10.
Zurück zum Zitat Kathalewar, MS, Joshi, PB, Sabnis, AS, Malshe, VC, “Non-isocyanate Polyurethanes: From Chemistry to Applications.” RSC Adv., 3 (13) 4110–4129 (2013)CrossRef Kathalewar, MS, Joshi, PB, Sabnis, AS, Malshe, VC, “Non-isocyanate Polyurethanes: From Chemistry to Applications.” RSC Adv., 3 (13) 4110–4129 (2013)CrossRef
11.
Zurück zum Zitat Delebecq, E, Pascault, J-P, Boutevin, B, Ganachaud, FO, “On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane.” Chem. Rev., 113 (1) 80–118 (2012)CrossRef Delebecq, E, Pascault, J-P, Boutevin, B, Ganachaud, FO, “On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane.” Chem. Rev., 113 (1) 80–118 (2012)CrossRef
12.
Zurück zum Zitat Guan, J, Song, Y, Lin, Y, Yin, X, Zuo, M, Zhao, Y, Tao, X, Zheng, Q, “Progress in Study of Non-isocyanate Polyurethane.” Ind. Eng. Chem. Res., 50 (11) 6517–6527 (2011)CrossRef Guan, J, Song, Y, Lin, Y, Yin, X, Zuo, M, Zhao, Y, Tao, X, Zheng, Q, “Progress in Study of Non-isocyanate Polyurethane.” Ind. Eng. Chem. Res., 50 (11) 6517–6527 (2011)CrossRef
13.
Zurück zum Zitat Farhadian, A, Afshani, G, Babapour, M, Babaei Miyardan, A, Nabid, MR, Safari, N, “A Facile and Green Route for Conversion of Bifunctional Epoxide and Vegetable Oils to Cyclic Carbonate: A Green Route to CO2 Fixation.” ChemistrySelect, 2 (4) 1431–1435 (2017)CrossRef Farhadian, A, Afshani, G, Babapour, M, Babaei Miyardan, A, Nabid, MR, Safari, N, “A Facile and Green Route for Conversion of Bifunctional Epoxide and Vegetable Oils to Cyclic Carbonate: A Green Route to CO2 Fixation.” ChemistrySelect, 2 (4) 1431–1435 (2017)CrossRef
14.
Zurück zum Zitat Büttner, H, Steinbauer, J, Wulf, C, Dindaroglu, M, Schmalz, HG, Werner, T, “Organocatalyzed Synthesis of Oleochemical Carbonates from CO2 and Renewables.” ChemSusChem, 10 (6) 1076–1079 (2017)CrossRef Büttner, H, Steinbauer, J, Wulf, C, Dindaroglu, M, Schmalz, HG, Werner, T, “Organocatalyzed Synthesis of Oleochemical Carbonates from CO2 and Renewables.” ChemSusChem, 10 (6) 1076–1079 (2017)CrossRef
15.
Zurück zum Zitat Guzmán, AF, Echeverri, DA, Rios, LA, “Carbonation of Epoxidized Castor Oil: A New Bio-based Building Block for the Chemical Industry.” J. Chem. Technol. Biotechnol., 92 (5) 1104–1110 (2017)CrossRef Guzmán, AF, Echeverri, DA, Rios, LA, “Carbonation of Epoxidized Castor Oil: A New Bio-based Building Block for the Chemical Industry.” J. Chem. Technol. Biotechnol., 92 (5) 1104–1110 (2017)CrossRef
16.
Zurück zum Zitat Poussard, L, Mariage, J, Grignard, B, Detrembleur, C, Jérôme, C, Calberg, C, Heinrichs, B, De Winter, J, Gerbaux, P, Raquez, JM, “Non-isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines to Achieve Thermosets or Thermoplastics.” Macromolecules, 49 (6) 2162–2171 (2016)CrossRef Poussard, L, Mariage, J, Grignard, B, Detrembleur, C, Jérôme, C, Calberg, C, Heinrichs, B, De Winter, J, Gerbaux, P, Raquez, JM, “Non-isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines to Achieve Thermosets or Thermoplastics.” Macromolecules, 49 (6) 2162–2171 (2016)CrossRef
17.
Zurück zum Zitat Javni, I, Hong, DP, Petrović, ZS, “Soy-Based Polyurethanes by Nonisocyanate Route.” J. Appl. Polym. Sci., 108 (6) 3867–3875 (2008)CrossRef Javni, I, Hong, DP, Petrović, ZS, “Soy-Based Polyurethanes by Nonisocyanate Route.” J. Appl. Polym. Sci., 108 (6) 3867–3875 (2008)CrossRef
18.
Zurück zum Zitat Tamami, B, Sohn, S, Wilkes, GL, “Incorporation of Carbon Dioxide into Soybean Oil and Subsequent Preparation and Studies of Nonisocyanate Polyurethane Networks.” J. Appl. Polym. Sci., 92 (2) 883–891 (2004)CrossRef Tamami, B, Sohn, S, Wilkes, GL, “Incorporation of Carbon Dioxide into Soybean Oil and Subsequent Preparation and Studies of Nonisocyanate Polyurethane Networks.” J. Appl. Polym. Sci., 92 (2) 883–891 (2004)CrossRef
19.
Zurück zum Zitat Howie JK, Schaefer JJ, Trout JE, “Synthesis of Polyol Medium Fatty Acid Polyesters.” US Patent 6,995,232, 2006 Howie JK, Schaefer JJ, Trout JE, “Synthesis of Polyol Medium Fatty Acid Polyesters.” US Patent 6,995,232, 2006
20.
Zurück zum Zitat Corrigan PJ, “Synthesis of Polyol Fatty Acid Polyesters.” US Patent 6,620,952, 2003 Corrigan PJ, “Synthesis of Polyol Fatty Acid Polyesters.” US Patent 6,620,952, 2003
21.
Zurück zum Zitat Schaefer JJ, Trout JE, “Synthesis of Purified, Partially Esterified Polyol Polyester Fatty Acid Compositions.” US Patent 6,887,947, 2005 Schaefer JJ, Trout JE, “Synthesis of Purified, Partially Esterified Polyol Polyester Fatty Acid Compositions.” US Patent 6,887,947, 2005
22.
Zurück zum Zitat Webster, DC, Sengupta, PP, Chen, Z, Pan, X, Paramarta, A., "Highly Functional Epoxidized Resins and Coatings." US Patent 9,096,773, 2015 Webster, DC, Sengupta, PP, Chen, Z, Pan, X, Paramarta, A., "Highly Functional Epoxidized Resins and Coatings." US Patent 9,096,773, 2015
23.
Zurück zum Zitat Pan, X, Webster, DC, “New Biobased High Functionality Polyols and Their Use in Polyurethane Coatings.” ChemSusChem, 5 (2) 419–429 (2012)CrossRef Pan, X, Webster, DC, “New Biobased High Functionality Polyols and Their Use in Polyurethane Coatings.” ChemSusChem, 5 (2) 419–429 (2012)CrossRef
24.
Zurück zum Zitat Paramarta, A, Pan, X, Webster, DC, “Highly Functional Acrylated Biobased Resin System.” Radtech Rep., 1 26–32 (2013) Paramarta, A, Pan, X, Webster, DC, “Highly Functional Acrylated Biobased Resin System.” Radtech Rep., 1 26–32 (2013)
25.
Zurück zum Zitat Nelson, TJ, Bultema, L, Eidenschink, N, Webster, DC, “Bio-based High Functionality Polyols and Their Use in 1 K Polyurethane Coatings.” J. Renew. Mater., 1 (2) 141–153 (2013)CrossRef Nelson, TJ, Bultema, L, Eidenschink, N, Webster, DC, “Bio-based High Functionality Polyols and Their Use in 1 K Polyurethane Coatings.” J. Renew. Mater., 1 (2) 141–153 (2013)CrossRef
26.
Zurück zum Zitat Kovash, CS, Pavlacky, E, Selvakumar, S, Sibi, MP, Webster, DC, “Thermoset Coatings from Epoxidized Sucrose Soyate and Blocked, Bio-Based Dicarboxylic Acids.” ChemSusChem, 7 (8) 2289–2294 (2014)CrossRef Kovash, CS, Pavlacky, E, Selvakumar, S, Sibi, MP, Webster, DC, “Thermoset Coatings from Epoxidized Sucrose Soyate and Blocked, Bio-Based Dicarboxylic Acids.” ChemSusChem, 7 (8) 2289–2294 (2014)CrossRef
27.
Zurück zum Zitat Ma, S, Webster, DC, Jabeen, F, “Hard and Flexible, Degradable Thermosets from Renewable Bioresources with the Assistance of Water and Ethanol.” Macromolecules, 49 (10) 3780–3788 (2016)CrossRef Ma, S, Webster, DC, Jabeen, F, “Hard and Flexible, Degradable Thermosets from Renewable Bioresources with the Assistance of Water and Ethanol.” Macromolecules, 49 (10) 3780–3788 (2016)CrossRef
28.
Zurück zum Zitat Ma, S, Webster, DC, “Naturally Occurring Acids as Cross-Linkers to Yield VOC-Free, High-Performance, Fully Bio-based, Degradable Thermosets.” Macromolecules, 48 (19) 7127–7137 (2015)CrossRef Ma, S, Webster, DC, “Naturally Occurring Acids as Cross-Linkers to Yield VOC-Free, High-Performance, Fully Bio-based, Degradable Thermosets.” Macromolecules, 48 (19) 7127–7137 (2015)CrossRef
29.
Zurück zum Zitat Paramarta, A, Webster, DC, “The Exploration of Michael-Addition Reaction Chemistry to Create High Performance, Ambient Cure Thermoset Coatings Based on Soybean Oil.” Prog. Org. Coat., 108 59–67 (2017)CrossRef Paramarta, A, Webster, DC, “The Exploration of Michael-Addition Reaction Chemistry to Create High Performance, Ambient Cure Thermoset Coatings Based on Soybean Oil.” Prog. Org. Coat., 108 59–67 (2017)CrossRef
30.
Zurück zum Zitat Paramarta, A, Webster, DC, “Bio-based High Performance Epoxy-Anhydride Thermosets for Structural Composites: The Effect of Composition Variables.” React. Funct. Polym., 105 140–149 (2016)CrossRef Paramarta, A, Webster, DC, “Bio-based High Performance Epoxy-Anhydride Thermosets for Structural Composites: The Effect of Composition Variables.” React. Funct. Polym., 105 140–149 (2016)CrossRef
31.
Zurück zum Zitat Webster DC, Yu AZ, “Biobased Highly Functional Oligomers and Thermosets Therefrom.” US Patent 9,765,233, 2017 Webster DC, Yu AZ, “Biobased Highly Functional Oligomers and Thermosets Therefrom.” US Patent 9,765,233, 2017
32.
Zurück zum Zitat Yu, AZ, Rahimi, A, Webster, DC, “High Performance Bio-based Thermosets from Dimethacrylated Epoxidized Sucrose Soyate (DMESS).” Eur. Polym. J., 99 202–211 (2018)CrossRef Yu, AZ, Rahimi, A, Webster, DC, “High Performance Bio-based Thermosets from Dimethacrylated Epoxidized Sucrose Soyate (DMESS).” Eur. Polym. J., 99 202–211 (2018)CrossRef
33.
Zurück zum Zitat Yu, AZ, Sahouani, JM, Setien, RA, Webster, DC, “Effect of Nature and Extent of Functional Group Modification on Properties of Thermosets from Methacrylated Epoxidized Sucrose Soyate.” React. Funct. Polym., 128 29–39 (2018)CrossRef Yu, AZ, Sahouani, JM, Setien, RA, Webster, DC, “Effect of Nature and Extent of Functional Group Modification on Properties of Thermosets from Methacrylated Epoxidized Sucrose Soyate.” React. Funct. Polym., 128 29–39 (2018)CrossRef
34.
Zurück zum Zitat Pan, X, Sengupta, P, Webster, DC, “Novel Biobased Epoxy Compounds: Epoxidized Sucrose Esters of Fatty Acids.” Green Chem., 13 (4) 965–975 (2011)CrossRef Pan, X, Sengupta, P, Webster, DC, “Novel Biobased Epoxy Compounds: Epoxidized Sucrose Esters of Fatty Acids.” Green Chem., 13 (4) 965–975 (2011)CrossRef
35.
Zurück zum Zitat Monono, EM, Webster, DC, Wiesenborn, DP, “Pilot Scale (10 kg) Production and Characterization of Epoxidized Sucrose Soyate.” Ind. Crops Prod., 74 987–997 (2015)CrossRef Monono, EM, Webster, DC, Wiesenborn, DP, “Pilot Scale (10 kg) Production and Characterization of Epoxidized Sucrose Soyate.” Ind. Crops Prod., 74 987–997 (2015)CrossRef
36.
Zurück zum Zitat Monono, EM, Bahr, JA, Pryor, SW, Webster, DC, Wiesenborn, DP, “Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production.” Org. Process Res. Dev., 19 (11) 1683–1692 (2015)CrossRef Monono, EM, Bahr, JA, Pryor, SW, Webster, DC, Wiesenborn, DP, “Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production.” Org. Process Res. Dev., 19 (11) 1683–1692 (2015)CrossRef
37.
Zurück zum Zitat Samanta, S, Selvakumar, S, Bahr, J, Wickramaratne, DS, Sibi, M, Chisholm, BJ, “Synthesis and Characterization of Polyurethane Networks Derived from Soybean-Oil-Based Cyclic Carbonates and Bioderivable Diamines.” ACS Sustain. Chem. Eng., 4 (12) 6551–6561 (2016)CrossRef Samanta, S, Selvakumar, S, Bahr, J, Wickramaratne, DS, Sibi, M, Chisholm, BJ, “Synthesis and Characterization of Polyurethane Networks Derived from Soybean-Oil-Based Cyclic Carbonates and Bioderivable Diamines.” ACS Sustain. Chem. Eng., 4 (12) 6551–6561 (2016)CrossRef
38.
Zurück zum Zitat Lambeth, RH, Henderson, TJ, “Organocatalytic Synthesis of (Poly) Hydroxyurethanes from Cyclic Carbonates and Amines.” Polymer, 54 (21) 5568–5573 (2013)CrossRef Lambeth, RH, Henderson, TJ, “Organocatalytic Synthesis of (Poly) Hydroxyurethanes from Cyclic Carbonates and Amines.” Polymer, 54 (21) 5568–5573 (2013)CrossRef
39.
Zurück zum Zitat Lombardo, VM, Dhulst, EA, Leitsch, EK, Wilmot, N, Heath, WH, Gies, AP, Miller, MD, Torkelson, JM, Scheidt, KA, “Cooperative Catalysis of Cyclic Carbonate Ring Opening: application Towards Non-Isocyanate Polyurethane Materials.” Eur. J. Org. Chem., 2015 (13) 2791–2795 (2015)CrossRef Lombardo, VM, Dhulst, EA, Leitsch, EK, Wilmot, N, Heath, WH, Gies, AP, Miller, MD, Torkelson, JM, Scheidt, KA, “Cooperative Catalysis of Cyclic Carbonate Ring Opening: application Towards Non-Isocyanate Polyurethane Materials.” Eur. J. Org. Chem., 2015 (13) 2791–2795 (2015)CrossRef
40.
Zurück zum Zitat Cornille, A, Blain, M, Auvergne, R, Andrioletti, B, Boutevin, B, Caillol, S, “A Study of Cyclic Carbonate Aminolysis at Room Temperature: Effect of Cyclic Carbonate Structures and Solvents on Polyhydroxyurethane Synthesis.” Polym. Chem., 8 (3) 592–604 (2017)CrossRef Cornille, A, Blain, M, Auvergne, R, Andrioletti, B, Boutevin, B, Caillol, S, “A Study of Cyclic Carbonate Aminolysis at Room Temperature: Effect of Cyclic Carbonate Structures and Solvents on Polyhydroxyurethane Synthesis.” Polym. Chem., 8 (3) 592–604 (2017)CrossRef
41.
Zurück zum Zitat Webster, DC, Crain, AL, “Synthesis and Applications of Cyclic Carbonate Functional Polymers in Thermosetting Coatings.” Prog. Org. Coat., 40 (1) 275–282 (2000)CrossRef Webster, DC, Crain, AL, “Synthesis and Applications of Cyclic Carbonate Functional Polymers in Thermosetting Coatings.” Prog. Org. Coat., 40 (1) 275–282 (2000)CrossRef
42.
Zurück zum Zitat Garipov, RM, Sysoev, VA, Mikheev, VV, Zagidullin, AI, Deberdeev, RY, Irzhak, VI, Berlin, AA, Reactivity of Cyclocarbonate Groups in Modified Epoxy–Amine Compositions, pp. 289–292. Springer, Berlin (2003) Garipov, RM, Sysoev, VA, Mikheev, VV, Zagidullin, AI, Deberdeev, RY, Irzhak, VI, Berlin, AA, Reactivity of Cyclocarbonate Groups in Modified Epoxy–Amine Compositions, pp. 289–292. Springer, Berlin (2003)
43.
Zurück zum Zitat Stockmayer, WH, “Molecular Distribution in Condensation Polymers.” J. Polym. Sci. Part A Polym. Chem., 9 (1) 69–71 (1952) Stockmayer, WH, “Molecular Distribution in Condensation Polymers.” J. Polym. Sci. Part A Polym. Chem., 9 (1) 69–71 (1952)
44.
Zurück zum Zitat Stockmayer, WH, “Molecular Distribution in Condensation Polymers.” J. Polym. Sci. Part A Polym. Chem., 11 (5) 424 (1953) Stockmayer, WH, “Molecular Distribution in Condensation Polymers.” J. Polym. Sci. Part A Polym. Chem., 11 (5) 424 (1953)
45.
Zurück zum Zitat Durand, D, Bruneau, CM, “Statistics of Random Macromolecular Networks, 2. Stepwise Polymerization of Polyfunctional Monomers Bearing A and B Coreactive Groups.” Macromol. Chem. Phys., 183 (4) 1021–1035 (1982)CrossRef Durand, D, Bruneau, CM, “Statistics of Random Macromolecular Networks, 2. Stepwise Polymerization of Polyfunctional Monomers Bearing A and B Coreactive Groups.” Macromol. Chem. Phys., 183 (4) 1021–1035 (1982)CrossRef
46.
Zurück zum Zitat Durand, D, Bruneau, C-M, “Average Functionalities of Macromolecules in Stepwise Polyfunctional Polymerization.” Polymer, 23 (1) 69–72 (1982)CrossRef Durand, D, Bruneau, C-M, “Average Functionalities of Macromolecules in Stepwise Polyfunctional Polymerization.” Polymer, 23 (1) 69–72 (1982)CrossRef
47.
Zurück zum Zitat Miller, DR, Macosko, CW, “Average Property Relations for Nonlinear Polymerization with Unequal Reactivity.” Macromolecules, 11 (4) 656–662 (1978)CrossRef Miller, DR, Macosko, CW, “Average Property Relations for Nonlinear Polymerization with Unequal Reactivity.” Macromolecules, 11 (4) 656–662 (1978)CrossRef
48.
Zurück zum Zitat Miller, DR, Valles, EM, Macosko, CW, “Calculation of Molecular Parameters for Stepwise Polyfunctional Polymerization.” Polym. Eng. Sci., 19 (4) 272–283 (1979)CrossRef Miller, DR, Valles, EM, Macosko, CW, “Calculation of Molecular Parameters for Stepwise Polyfunctional Polymerization.” Polym. Eng. Sci., 19 (4) 272–283 (1979)CrossRef
49.
Zurück zum Zitat Stafford, JW, “Multifunctional Polycondensation and Gelation: A Kinetic Approach.” J. Polym. Sci. Part A Polym. Chem., 19 (12) 3219–3236 (1981)CrossRef Stafford, JW, “Multifunctional Polycondensation and Gelation: A Kinetic Approach.” J. Polym. Sci. Part A Polym. Chem., 19 (12) 3219–3236 (1981)CrossRef
50.
Zurück zum Zitat Nelson, TJ, Masaki, B, Morseth, Z, Webster, DC, “Highly Functional Biobased Polyols and Their Use in Melamine–Formaldehyde Coatings.” J. Coat. Technol. Res., 10 (6) 757–767 (2013)CrossRef Nelson, TJ, Masaki, B, Morseth, Z, Webster, DC, “Highly Functional Biobased Polyols and Their Use in Melamine–Formaldehyde Coatings.” J. Coat. Technol. Res., 10 (6) 757–767 (2013)CrossRef
Metadaten
Titel
Catalyzed non-isocyanate polyurethane (NIPU) coatings from bio-based poly(cyclic carbonates)
verfasst von
Arvin Z. Yu
Raul A. Setien
Jonas M. Sahouani
James Docken Jr
Dean C. Webster
Publikationsdatum
05.09.2018
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 1/2019
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-0135-7

Weitere Artikel der Ausgabe 1/2019

Journal of Coatings Technology and Research 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.