Skip to main content
Erschienen in: Journal of Coatings Technology and Research 1/2022

04.05.2021

The influence of barrier pigments in waterborne barrier coatings on cellulose nanofiber layers

verfasst von: Mohammed Al-Gharrawi, Rachel Ollier, Jinwu Wang, Douglas W. Bousfield

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Layers of cellulose nanofibers (CNF) have great potential to be used in food packaging applications because of their oxygen and grease barrier properties. However, because of their sensitivity to moisture, they likely will need to be used in a layered structure with water vapor barrier layers. Waterborne barrier coatings (WBBC) have the potential to provide this water vapor barrier, but their performance on paper with a CNF layer has not been described in the literature. Paper that had a CNF layer was coated with three different WBBC with various levels of two different barrier pigments to improve the water vapor barrier properties of these systems. The effective diffusion coefficient of these systems was obtained by fitting the data to a two-layer diffusion model. A finite element code was used to predict the flux rate of water vapor through the barrier layers in the presence of a barrier pigment. The dangers of samples “blocking” in production have been tested as well as grease barrier properties. The presence of the CNF layer on paper is shown to improve the performance of the water vapor barrier layer, in some cases, by a factor of six. Adding barrier pigment to the WBBC improves barrier properties at low concentration by 15%, but as the concentration of pigment increases, the barrier properties decrease. The water vapor transmission rate does not decrease to the same order of magnitude as expected from simple theoretical models and the finite element calculations. This result likely is linked to fine bubbles in the coatings that are hard to remove or other defects that are generated during coating or drying. Barrier pigments remove concerns around blocking. All samples had good grease barrier properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schubert, G, Boiron, G, “Hydro Aluminium Deutschland GmbH.” Film for Food Packaging. US Patent Application 10/501,319, 2005 Schubert, G, Boiron, G, “Hydro Aluminium Deutschland GmbH.” Film for Food Packaging. US Patent Application 10/501,319, 2005
2.
Zurück zum Zitat Lavoine, N, Desloges, I, Dufresne, A, Bras, J, “Microfibrillated Cellulose - Its Barrier Properties and Applications in Cellulosic Materials: A Review.” Carbohydr. Polym., 90 (2) 735–764 (2012)CrossRef Lavoine, N, Desloges, I, Dufresne, A, Bras, J, “Microfibrillated Cellulose - Its Barrier Properties and Applications in Cellulosic Materials: A Review.” Carbohydr. Polym., 90 (2) 735–764 (2012)CrossRef
3.
Zurück zum Zitat Tyagi, P, Lucia, LA, Hubbe, MA, Pal, L, “Nanocellulose-Based Multilayer Barrier Coatings for Gas, Oil, and Grease Resistance.” Carbohydr. Polym., 206 281–288 (2019)CrossRef Tyagi, P, Lucia, LA, Hubbe, MA, Pal, L, “Nanocellulose-Based Multilayer Barrier Coatings for Gas, Oil, and Grease Resistance.” Carbohydr. Polym., 206 281–288 (2019)CrossRef
4.
Zurück zum Zitat Moon, RJ, Schueneman, GT, Simonsen, J, “Overview of Cellulose Nanomaterials, Their Capabilities, and Applications.“ JOM, 68 (9) 2383–2394 (2016)CrossRef Moon, RJ, Schueneman, GT, Simonsen, J, “Overview of Cellulose Nanomaterials, Their Capabilities, and Applications.“ JOM, 68 (9) 2383–2394 (2016)CrossRef
5.
Zurück zum Zitat Moon, RJ, Martini, A, Nairn, J, Simonsen, J, “Cellulose Nanomaterials Review: Structure, Properties, and Nanocomposites.” Chem. Soc. Rev., 40 (7) 3941–3994 (2011)CrossRef Moon, RJ, Martini, A, Nairn, J, Simonsen, J, “Cellulose Nanomaterials Review: Structure, Properties, and Nanocomposites.” Chem. Soc. Rev., 40 (7) 3941–3994 (2011)CrossRef
6.
Zurück zum Zitat Henriette, M, Rosa, A, Mattoso, L, “Nanocellulose in Bio-Based Food Packaging Applications.” Ind. Crops Prod.. 97 664–671 (2017)CrossRef Henriette, M, Rosa, A, Mattoso, L, “Nanocellulose in Bio-Based Food Packaging Applications.” Ind. Crops Prod.. 97 664–671 (2017)CrossRef
7.
Zurück zum Zitat Johansson, C, Bras, J, Mondragon, I, Nechita, P, Plackett, D, Šimon, P, Svetec, DG, Virtanen, S, Baschetti, M, Breen, C, “Renewable Fibers and Bio-Based Materials for Packaging Applications - A Review of Recent Developments.” BioResources, 7 (2) 2506–2552 (2012)CrossRef Johansson, C, Bras, J, Mondragon, I, Nechita, P, Plackett, D, Šimon, P, Svetec, DG, Virtanen, S, Baschetti, M, Breen, C, “Renewable Fibers and Bio-Based Materials for Packaging Applications - A Review of Recent Developments.” BioResources, 7 (2) 2506–2552 (2012)CrossRef
8.
Zurück zum Zitat Rastogi, V, Samyn, P, “Bio-Based Coatings for Paper Applications.” Coatings, 5 (4) 887–930 (2015)CrossRef Rastogi, V, Samyn, P, “Bio-Based Coatings for Paper Applications.” Coatings, 5 (4) 887–930 (2015)CrossRef
9.
Zurück zum Zitat Soroudi, A, Jakubowicz, I, “Recycling of Bioplastics, Their Blends and Biocomposites: A Review.” Eur. Polym. J., 49 (10) 2839–2858 (2013)CrossRef Soroudi, A, Jakubowicz, I, “Recycling of Bioplastics, Their Blends and Biocomposites: A Review.” Eur. Polym. J., 49 (10) 2839–2858 (2013)CrossRef
10.
Zurück zum Zitat Emadian, SM, Onay, TT, Demirel, B, “Biodegradation of Bioplastics in Natural Environments.” Waste Management, 59 526–536 (2017)CrossRef Emadian, SM, Onay, TT, Demirel, B, “Biodegradation of Bioplastics in Natural Environments.” Waste Management, 59 526–536 (2017)CrossRef
11.
Zurück zum Zitat Wang, J, Gardner, D, Stark, N, Bousfield, D, Tajvidi, M, Cai, Z, “Moisture and Oxygen Barrier Properties of Cellulose Nanomaterial-Based Films.” ACS Sustain. Chem. Eng., 6 (1) 49–70 (2018)CrossRef Wang, J, Gardner, D, Stark, N, Bousfield, D, Tajvidi, M, Cai, Z, “Moisture and Oxygen Barrier Properties of Cellulose Nanomaterial-Based Films.” ACS Sustain. Chem. Eng., 6 (1) 49–70 (2018)CrossRef
12.
Zurück zum Zitat Nair, S, Zhu, J, Deng, Y, Ragauskas, A, “High-Performance Green Barriers Based on Nanocellulose.” Sustain. Chem. Process., 2 (1) 23 (2014)CrossRef Nair, S, Zhu, J, Deng, Y, Ragauskas, A, “High-Performance Green Barriers Based on Nanocellulose.” Sustain. Chem. Process., 2 (1) 23 (2014)CrossRef
13.
Zurück zum Zitat Aulin, C, Gällstedt, M, Lindström, T, “Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings.” Cellulose, 17 (3) 559–574 (2010)CrossRef Aulin, C, Gällstedt, M, Lindström, T, “Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings.” Cellulose, 17 (3) 559–574 (2010)CrossRef
14.
Zurück zum Zitat Fukuzumi, H, Saito, T, Iwata, T, Kumamoto, Y, Isogai, A, “Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation.” Biomacromolecules, 10 (1) 162–165 (2009)CrossRef Fukuzumi, H, Saito, T, Iwata, T, Kumamoto, Y, Isogai, A, “Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation.” Biomacromolecules, 10 (1) 162–165 (2009)CrossRef
15.
Zurück zum Zitat Kumar, V, Bollström, R, Yang, A, Chen, Q, Chen, G, Salminen, P, Bousfield, D, Toivakka, M, “Comparison of Nano- and Microfibrillated Cellulose Films.” Cellulose, 21 (5) 3443–3456 (2014)CrossRef Kumar, V, Bollström, R, Yang, A, Chen, Q, Chen, G, Salminen, P, Bousfield, D, Toivakka, M, “Comparison of Nano- and Microfibrillated Cellulose Films.” Cellulose, 21 (5) 3443–3456 (2014)CrossRef
16.
Zurück zum Zitat Peresin, M, Vartiainen, J, Kunnari, V, Kaljunen, T, Tammelin, T, Qvintus, P, “Large-Scale Nanofibrillated Cellulose Film: An Overview on Its Production, Properties, and Potential Applications.” In: Proceeding 4th Int. Conf. Pulping, Papermak. Biotechnol. (ICPPB’12), Vols. I II, October 2016, pp. 891–895 (2012) Peresin, M, Vartiainen, J, Kunnari, V, Kaljunen, T, Tammelin, T, Qvintus, P, “Large-Scale Nanofibrillated Cellulose Film: An Overview on Its Production, Properties, and Potential Applications.” In: Proceeding 4th Int. Conf. Pulping, Papermak. Biotechnol. (ICPPB’12), Vols. I II, October 2016, pp. 891–895 (2012)
17.
Zurück zum Zitat Mousavi, S, Afra, E, Tajvidi, M, Bousfield, D, Dehghani-Firouzabadi, M, “Application of Cellulose Nanofibril (CNF) as Coating on Paperboard at Moderate Solids Content and High Coating Speed Using Blade Coater.” Prog. Org. Coat., 122 207–218 (2018)CrossRef Mousavi, S, Afra, E, Tajvidi, M, Bousfield, D, Dehghani-Firouzabadi, M, “Application of Cellulose Nanofibril (CNF) as Coating on Paperboard at Moderate Solids Content and High Coating Speed Using Blade Coater.” Prog. Org. Coat., 122 207–218 (2018)CrossRef
18.
Zurück zum Zitat Johnson, D, Paradis, M, Tajvidi, M, Walker, C, Algharrawi M, Bousfield D, “Surface Application of Cellulose Microfibrils on Paper – Effects of Basis Weight and Surface Coverage Levels.” In: Proc. TAPPI PAPERCON Conference; TAPPI Press (2019) Johnson, D, Paradis, M, Tajvidi, M, Walker, C, Algharrawi M, Bousfield D, “Surface Application of Cellulose Microfibrils on Paper – Effects of Basis Weight and Surface Coverage Levels.” In: Proc. TAPPI PAPERCON Conference; TAPPI Press (2019)
19.
Zurück zum Zitat Kumar, V, Elfving, A, Koivula, H, Bousfield, D, Toivakka, M, “Roll-to-Roll Processed Cellulose Nano Fiber Coatings.” Ind. Eng. Chem. Res., 55 (12) 3603–3613 (2016)CrossRef Kumar, V, Elfving, A, Koivula, H, Bousfield, D, Toivakka, M, “Roll-to-Roll Processed Cellulose Nano Fiber Coatings.” Ind. Eng. Chem. Res., 55 (12) 3603–3613 (2016)CrossRef
20.
Zurück zum Zitat Kumar, V, Koppolu, V, Bousfield, D, Toivakka, M, “Substrate Role in Coating of Microfibrillated Cellulose Suspensions.” Cellulose, 24 (3) 1247–1260 (2017)CrossRef Kumar, V, Koppolu, V, Bousfield, D, Toivakka, M, “Substrate Role in Coating of Microfibrillated Cellulose Suspensions.” Cellulose, 24 (3) 1247–1260 (2017)CrossRef
21.
Zurück zum Zitat Kumar, V, Ottesen, V, Syverud, K, Gregersen, Ø, Toivakka, M, “Coatability of Cellulose Nanofibril Suspensions: Role of Rheology and Water Retention.” BioResources, 12 7656–7679 (2017) Kumar, V, Ottesen, V, Syverud, K, Gregersen, Ø, Toivakka, M, “Coatability of Cellulose Nanofibril Suspensions: Role of Rheology and Water Retention.” BioResources, 12 7656–7679 (2017)
22.
Zurück zum Zitat Bollström, R, Nyqvist, R, Preston, J, Salminen, P, Toivakka, M, “Barrier Properties Created by Dispersion Coating.” Tappi J., 12 (4) 45–51 (2013)CrossRef Bollström, R, Nyqvist, R, Preston, J, Salminen, P, Toivakka, M, “Barrier Properties Created by Dispersion Coating.” Tappi J., 12 (4) 45–51 (2013)CrossRef
23.
Zurück zum Zitat Vähä-Nissi, M, Savolainen, A, “Filled Barrier Dispersion Coatings.” In: TAPPI Coating Conference, pp. 287–304 (1999) Vähä-Nissi, M, Savolainen, A, “Filled Barrier Dispersion Coatings.” In: TAPPI Coating Conference, pp. 287–304 (1999)
24.
Zurück zum Zitat Hubbe, M, Ferrer, A, Tyagi, P, Yin, Y, Salas, C, Pal, L, Orlando, JR, “Nanocellulose in Functional Packaging.” BioResources, 12 2143–2233 (2017) Hubbe, M, Ferrer, A, Tyagi, P, Yin, Y, Salas, C, Pal, L, Orlando, JR, “Nanocellulose in Functional Packaging.” BioResources, 12 2143–2233 (2017)
25.
Zurück zum Zitat Österberg, M, Vartiainen, J, Lucenius, J, Hippi, U, Seppälä, J, Serimaa, J, Serimaa, R, Laine, JRSJL, “A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials.” ACS Appl. Mater. Interfaces, 5 4640–4647 (2013) Österberg, M, Vartiainen, J, Lucenius, J, Hippi, U, Seppälä, J, Serimaa, J, Serimaa, R, Laine, JRSJL, “A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials.” ACS Appl. Mater. Interfaces, 5 4640–4647 (2013)
26.
Zurück zum Zitat Chinga-Carrasco, G, Averianova, N, Gibadullin, M, Petrov, V, Leirset, I, Syverud, K, “Micro-Structural Characterisation of Homogeneous and Layered MFC Nano-Composites.” Micron, 44 (1) 331–338 (2013)CrossRef Chinga-Carrasco, G, Averianova, N, Gibadullin, M, Petrov, V, Leirset, I, Syverud, K, “Micro-Structural Characterisation of Homogeneous and Layered MFC Nano-Composites.” Micron, 44 (1) 331–338 (2013)CrossRef
27.
Zurück zum Zitat Koppolu, R, Lahti, J, Abitbol, T, Swerin, A, Kuusipalo, J, Toivakka, M, “Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings.” ACS Appl. Mater. Interfaces, 11 (12) 11920–11927 (2019)CrossRef Koppolu, R, Lahti, J, Abitbol, T, Swerin, A, Kuusipalo, J, Toivakka, M, “Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings.” ACS Appl. Mater. Interfaces, 11 (12) 11920–11927 (2019)CrossRef
28.
Zurück zum Zitat Sun, Q, Schork, FJ, Deng, Y, “Water-Based Polymer/Clay Nanocomposite Suspension for Improving Water and Moisture Barrier in Coating.” Compos. Sci. Technol., 67 (9) 1823–1829 (2007)CrossRef Sun, Q, Schork, FJ, Deng, Y, “Water-Based Polymer/Clay Nanocomposite Suspension for Improving Water and Moisture Barrier in Coating.” Compos. Sci. Technol., 67 (9) 1823–1829 (2007)CrossRef
29.
Zurück zum Zitat Vähä-Nissi, M, Kervinen, K, Savolainen, A, Egolf, S, Lau, W, “Hydrophobic Polymers as Barrier Dispersion Coatings.” Appl. Polym. Sci., 101 (3) 1958–1962 (2005)CrossRef Vähä-Nissi, M, Kervinen, K, Savolainen, A, Egolf, S, Lau, W, “Hydrophobic Polymers as Barrier Dispersion Coatings.” Appl. Polym. Sci., 101 (3) 1958–1962 (2005)CrossRef
30.
Zurück zum Zitat Andersson, C, Marie, E, Järnström, L, “Barrier Properties and Heat Sealability/Failure Mechanisms of Dispersion-Coated Paperboard.” Package. Technol. Sci., 15 (4) 209–224 (2002)CrossRef Andersson, C, Marie, E, Järnström, L, “Barrier Properties and Heat Sealability/Failure Mechanisms of Dispersion-Coated Paperboard.” Package. Technol. Sci., 15 (4) 209–224 (2002)CrossRef
31.
Zurück zum Zitat Kugge, C, Johnson, B, “Improved Barrier Properties of Double Dispersion Coated Liner.” Prog. Org. Coat., 62 (4) 430–435 (2008)CrossRef Kugge, C, Johnson, B, “Improved Barrier Properties of Double Dispersion Coated Liner.” Prog. Org. Coat., 62 (4) 430–435 (2008)CrossRef
32.
Zurück zum Zitat Zhu, Y, Bousfield, D, Gramlich, W, “The Influence of Pigment Type and Loading on Water Vapor Barrier Properties of Paper Coatings Before and After Folding.” Prog. Org. Coat., 132 201–210 (2019)CrossRef Zhu, Y, Bousfield, D, Gramlich, W, “The Influence of Pigment Type and Loading on Water Vapor Barrier Properties of Paper Coatings Before and After Folding.” Prog. Org. Coat., 132 201–210 (2019)CrossRef
33.
Zurück zum Zitat Martinez-Hermosilla, G, Mesic, B, Bronlund, J, “A Review of Thermoplastic Composites Vapour Permeability Models: Applicability for Barrier Dispersion Coatings.” Package. Technol. Sci., 28 (7) 565–578 (2015)CrossRef Martinez-Hermosilla, G, Mesic, B, Bronlund, J, “A Review of Thermoplastic Composites Vapour Permeability Models: Applicability for Barrier Dispersion Coatings.” Package. Technol. Sci., 28 (7) 565–578 (2015)CrossRef
34.
Zurück zum Zitat Nielsen, L, “Models for the Permeability of Filled Polymer Systems.” J. Macromol. Sci., 1 (5) 929–942 (1967)CrossRef Nielsen, L, “Models for the Permeability of Filled Polymer Systems.” J. Macromol. Sci., 1 (5) 929–942 (1967)CrossRef
Metadaten
Titel
The influence of barrier pigments in waterborne barrier coatings on cellulose nanofiber layers
verfasst von
Mohammed Al-Gharrawi
Rachel Ollier
Jinwu Wang
Douglas W. Bousfield
Publikationsdatum
04.05.2021
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 1/2022
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-021-00482-0

Weitere Artikel der Ausgabe 1/2022

Journal of Coatings Technology and Research 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.