Skip to main content
Erschienen in: Neuroinformatics 4/2008

01.12.2008

KInNeSS: A Modular Framework for Computational Neuroscience

Erschienen in: Neuroinformatics | Ausgabe 4/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
KInNeSS is licensed under the GNU general public license; © Anatoli Gorchetchnikov.
 
5
SANNDRA is licensed under the GNU general public license; © Anatoli Gorchetchnikov.
 
10
The equations in “XML Support” section follow sign conventions found in the literature. Note that in the KInNeSS interface, this convention is reversed.
 
11
When loading spatial input patterns from a .png file, the yellow channel represents the alpha channel.
 
12
The membrane potential outputted by KInNeSS is shifted by an amount equal to the leak potential of the compartment. For example, when the user sets the compartmental leakage reverse potential to -60 mV, a value of zero in the output file corresponds to a membrane potential of -60 mV.
 
14
KDE always list native KDE classes with K in the front. All names that start with K and are followed by a capital letter are inherited from KDE native classes.
 
Literatur
Zurück zum Zitat Bower, J. M., & Beeman, D. (1998). The Book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer. Bower, J. M., & Beeman, D. (1998). The Book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer.
Zurück zum Zitat Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. The Journal of Comparative Neurology, 23(3), 349–398. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. The Journal of Comparative Neurology, 23(3), 349–398.
Zurück zum Zitat Cannon, R. C., Hasselmo, M. E., & Koene, R. A. (2002). From biophysics to behavior: Catacomb2 and the design of biologically plausible models for spatial navigation. Neuroinformatics, 1(1), 3–42. doi:10.1385/NI:1:1:003.CrossRef Cannon, R. C., Hasselmo, M. E., & Koene, R. A. (2002). From biophysics to behavior: Catacomb2 and the design of biologically plausible models for spatial navigation. Neuroinformatics, 1(1), 3–42. doi:10.​1385/​NI:​1:​1:​003.CrossRef
Zurück zum Zitat Cannon, R. C., Gewaltig, M. O., Gleeson, P., Bhalla, U. S., Hines, M. L., Howell, F. H., et al. (2007). Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics, 5(2), 127–138. doi:10.1007/s12021-007-0004-5.PubMedCrossRef Cannon, R. C., Gewaltig, M. O., Gleeson, P., Bhalla, U. S., Hines, M. L., Howell, F. H., et al. (2007). Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics, 5(2), 127–138. doi:10.​1007/​s12021-007-0004-5.PubMedCrossRef
Zurück zum Zitat Carnevale, N. T., & Hines, M. L. (2006). The neuron book. Cambridge: Cambridge University Press. Carnevale, N. T., & Hines, M. L. (2006). The neuron book. Cambridge: Cambridge University Press.
Zurück zum Zitat Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5(2), 96–104. doi:10.1007/s12021-007-0003-6.PubMedCrossRef Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5(2), 96–104. doi:10.​1007/​s12021-007-0003-6.PubMedCrossRef
Zurück zum Zitat Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM. Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM.
Zurück zum Zitat Ermentrout, B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with slow oscillation. SIAM Journal on Applied Mathematics, 46, 233–252. doi:10.1137/0146017.CrossRef Ermentrout, B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with slow oscillation. SIAM Journal on Applied Mathematics, 46, 233–252. doi:10.​1137/​0146017.CrossRef
Zurück zum Zitat Gewaltig, M. O., & Diesmann, M. (2007). NEST. Scholaropedia, 2(4), 1430. Gewaltig, M. O., & Diesmann, M. (2007). NEST. Scholaropedia, 2(4), 1430.
Zurück zum Zitat Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: model description methods for collaborative modeling in neuroscience. Philos. T. Roy. Soc. B, 356, 1209–1228. doi:10.1098/rstb.2001.0910.CrossRef Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: model description methods for collaborative modeling in neuroscience. Philos. T. Roy. Soc. B, 356, 1209–1228. doi:10.​1098/​rstb.​2001.​0910.CrossRef
Zurück zum Zitat Gorchetchnikov, A. (2000). An approach to a biologically realistic simulation of natural memory, Master Thesis, Middle Tennessee State University, Murfreesboro, TN. Gorchetchnikov, A. (2000). An approach to a biologically realistic simulation of natural memory, Master Thesis, Middle Tennessee State University, Murfreesboro, TN.
Zurück zum Zitat Gorchetchnikov, A., & Hasselmo, M. E. (2002). A model of hippocampal circuitry mediating goal-driven navigation in a familiar environment. Neurocomputing, 44–46, 424–427. doi:10.1016/S0925-2312(02)00395-8. Gorchetchnikov, A., & Hasselmo, M. E. (2002). A model of hippocampal circuitry mediating goal-driven navigation in a familiar environment. Neurocomputing, 44–46, 424–427. doi:10.​1016/​S0925-2312(02)00395-8.
Zurück zum Zitat Gorchetchnikov, A., & Hasselmo, M. E. (2005). A biophysical implementation of a bidirectional graph search algorithm to solve multiple goal navigation tasks. Connection Science, 17(1–2), 145–166. doi:10.1080/09540090500140925.CrossRef Gorchetchnikov, A., & Hasselmo, M. E. (2005). A biophysical implementation of a bidirectional graph search algorithm to solve multiple goal navigation tasks. Connection Science, 17(1–2), 145–166. doi:10.​1080/​0954009050014092​5.CrossRef
Zurück zum Zitat Grossberg, S., & Versace, M. (2008). Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Research, 1218, 278–312.PubMedCrossRef Grossberg, S., & Versace, M. (2008). Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Research, 1218, 278–312.PubMedCrossRef
Zurück zum Zitat Hammarlund, P., & Ekeberg, Ö. (1998). Large neural network simulations on multiple hardware platforms. The Journal of Comparative Neurology, 5, 443–459. Hammarlund, P., & Ekeberg, Ö. (1998). Large neural network simulations on multiple hardware platforms. The Journal of Comparative Neurology, 5, 443–459.
Zurück zum Zitat Hines, M. (1993). In F. Eeckman (Ed.), NEURON: a program for simulation of nerve equations in Neural Systems: Analysis and Modeling (pp. 127–136). Kluwer. Hines, M. (1993). In F. Eeckman (Ed.), NEURON: a program for simulation of nerve equations in Neural Systems: Analysis and Modeling (pp. 127–136). Kluwer.
Zurück zum Zitat Hines, M., & Carnevale, N. T. (1994). Computer simulation methods for neurons. In M. Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge: MIT Press. Hines, M., & Carnevale, N. T. (1994). Computer simulation methods for neurons. In M. Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge: MIT Press.
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed
Zurück zum Zitat Humphrey, D. R. (1979). Extracellular, single-unit recording methods. In D. R. Humphrey (Ed.), Electrophysiological techniques pp. 199–259. Bethesda: Society for Neuroscience. Humphrey, D. R. (1979). Extracellular, single-unit recording methods. In D. R. Humphrey (Ed.), Electrophysiological techniques pp. 199–259. Bethesda: Society for Neuroscience.
Zurück zum Zitat Köhn, J., & Wörgötter, F. (1998). Employing the Z-transform to optimize the calculation of the synaptic conductance of NMDA and other synaptic channels in network simulations. Neural Computation, 10, 1639–1651. doi:10.1162/089976698300017061.PubMedCrossRef Köhn, J., & Wörgötter, F. (1998). Employing the Z-transform to optimize the calculation of the synaptic conductance of NMDA and other synaptic channels in network simulations. Neural Computation, 10, 1639–1651. doi:10.​1162/​0899766983000170​61.PubMedCrossRef
Zurück zum Zitat Leveille, J., Grossberg, S., Mingolla, E., & Versace, M. (2008). Collinear facilitation and visual grouping in the spiking LAMINART model. Vision Science Society Abstract (accepted for VSS 2008) Naples, FL. Leveille, J., Grossberg, S., Mingolla, E., & Versace, M. (2008). Collinear facilitation and visual grouping in the spiking LAMINART model. Vision Science Society Abstract (accepted for VSS 2008) Naples, FL.
Zurück zum Zitat Natschläger, T., Markram, H., & Maass, M. (2002). Computer models and analysis tools for neural microcircuits. In R. Kötter (Ed.), A practical guide to neuroscience databases and associated tools, chapter 9. Boston: Kluwer. Natschläger, T., Markram, H., & Maass, M. (2002). Computer models and analysis tools for neural microcircuits. In R. Kötter (Ed.), A practical guide to neuroscience databases and associated tools, chapter 9. Boston: Kluwer.
Zurück zum Zitat Prescott, S. A., Ratté, S., De Koninck, Y., & Sejnowski, T. J. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. The Journal of Neuroscience, 26, 9084–9097. doi:10.1523/JNEUROSCI.1388-06.2006.PubMedCrossRef Prescott, S. A., Ratté, S., De Koninck, Y., & Sejnowski, T. J. (2006). Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. The Journal of Neuroscience, 26, 9084–9097. doi:10.​1523/​JNEUROSCI.​1388-06.​2006.PubMedCrossRef
Zurück zum Zitat Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input–output relations. In R. F. Reiss (Ed.), Neural theory and modeling (pp. 73–97). Palo Alto: Stanford University Press. Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input–output relations. In R. F. Reiss (Ed.), Neural theory and modeling (pp. 73–97). Palo Alto: Stanford University Press.
Zurück zum Zitat Segev, I., & Burke, R. E. (1998). Compartmental models of complex neurons. In Methods in neuronal modeling. From ions to networks. Cambridge: MIT Press. Segev, I., & Burke, R. E. (1998). Compartmental models of complex neurons. In Methods in neuronal modeling. From ions to networks. Cambridge: MIT Press.
Zurück zum Zitat Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge: Cambridge University Press. Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge: Cambridge University Press.
Metadaten
Titel
KInNeSS: A Modular Framework for Computational Neuroscience
Publikationsdatum
01.12.2008
Erschienen in
Neuroinformatics / Ausgabe 4/2008
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-008-9021-2