Skip to main content
Erschienen in: Energy Efficiency 4/2019

25.05.2018 | Original Article

Tracking economy-wide energy efficiency using LMDI: approach and practices

verfasst von: Tian Goh, B. W. Ang

Erschienen in: Energy Efficiency | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various national and international agencies have developed and reported accounting systems to track progress in energy efficiency improvements. Most of these energy efficiency accounting systems (EEAS) are based on index decomposition analysis and the logarithmic mean Divisia index (LMDI) has emerged as the main decomposition method used. We discuss the fundamentals of LMDI with specific reference to energy efficiency analysis and its application to national EEAS development. The main design dimensions and elements of an EEAS are explained. The flexibility of the LMDI approach has allowed analysts and national agencies to tailor the EEAS to suit their national needs and policy purposes. We conduct a literature survey of the implemented and proposed EEAS and summarise their key features. In view of its growing importance, the extension of the EEAS to an energy-related emissions accounting system to track progress towards climate mitigation targets is introduced. Finally, the strengths and limitations of an LMDI-based EEAS for the tracking of energy efficiency trends are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the literature, there are two widely reported decomposition analysis techniques—index decomposition analysis and structural decomposition analysis. For simplicity, in this paper, decomposition refers to index decomposition analysis.
 
2
The European Union also uses an alternative approach, the unit consumption approach, to compute an energy efficiency indicator known as ODEX. Based on Ang et al. (2010), ODEX can be treated as a special case of the index decomposition analysis approach.
 
3
Only publications in the English language are included in the literature survey.
 
4
Examples of methods that are not perfect in decomposition are the Laspeyres index method and Paasche index method. The former was widely used by researchers and analysts before the introduction of LMDI in the late 1990s (Ang 2015).
 
5
Other methods that are perfect in decomposition such as the Shapley/Sun method (Sun, 1998) and the generalised Fisher ideal index method (Ang et al. 2004) have formulae that increase in complexity with the number of factors in the decomposition. In terms of ease of use, LMDI is superior to these decomposition methods.
 
6
A third dimension is type of aggregate indicator (energy consumption or energy intensity). For further details, see Ang (2015).
 
7
The energy transformation sector’s “energy consumption” includes energy losses from electricity and heat generation and the energy sector’s own use. It may also include energy losses and own use pertaining to transformations of other energy sources. In most countries, these other transformations generally account for a small proportion of the total “energy consumption” in the sector. For simplicity, in this study, the energy transformation sector is taken as the electricity sector.
 
8
Although LMDI-II’s weights are more complicated, they sum to unity. This may be a desirable property for some analyses (Ang 2015).
 
9
LMDI-II is more commonly used multiplicatively as the decomposition results do not depend on the indicator chosen. The effects remain the same regardless of whether energy consumption or intensity is decomposed. The LMDI-I and LMDI-II formulae presented here are referred to as LMDI model 1 and LMDI model 3 respectively in Ang (2015). They are two out of the eight LMDI models listed in the reference.
 
10
Decomposition results using more realistic or real data can be found in Ang et al. (2010) and Stanwix et al. (2015) and Office of Energy Efficiency (2016).
 
11
Economic activity in the services sector does not influence energy consumption as much as floor area. The intensity effects derived based on the two different activities have to be interpreted differently. For the same country over the same time period, the energy intensity effect for the services sector can be negative when the activity for the sector is value added while it can be positive when floor area is the activity. At times, the choice of activity depends on the agency—economic agencies tend to be more interested in monetary measures of activity while energy and environment agencies prefer physical measures.
 
12
A list of recommended activity indicators for each sector can be found in IEA (2014).
 
13
The Divisia index is based on a line integral over a period of continuous time. Due to the discreteness of real data, approximations have to be made. Chaining analysis provides better approximations to the path of the line integral as annual data is used to estimate the trends over time. Numerical examples showing the difference between chaining and non-chaining decomposition analyses can be found in Ang and Liu (2007).
 
14
If there is more than one publication for a single country from the same agency, the latest publication is listed.
 
15
The Laspeyres index method is the most intuitive decomposition method; the contribution of a particular factor to the total change in energy consumption is estimated by keeping all factors in the base year and changing the factor of interest.
 
16
The refined Laspeyres index method used is very similar to the Shapley/Sun method which is an improvement to the Laspeyres index method. The residual from the Laspeyres method is reallocated to various factors to achieve perfect decomposition. See Sun (1998) for more details on the method.
 
17
The emission intensity Uij is dependent on the fuel mix of energy consumption in the sub-sector and the fuel emission factors, and further decomposition may be conducted if needed to analyse the emission intensity.
 
18
Emissions from the energy transformation sector can be classified under each end-use sector to simplify the decomposition. For instance, the emissions from the use of electricity can be distributed to end-use sector based on the share of electricity used by each sector.
 
19
In the Kaya identity, CO2 emissions are expressed as the product of four factors—population, GDP per capita, energy consumption per unit of GDP output and CO2 emissions per unit of energy consumed.
 
20
In Australia, it was observed that the energy-GDP ratio increased in the early years as the EEI decreased. Subsequently, the energy-GDP ratio decreased more slowly in comparison to the EEI in the 1990s and decreased more rapidly in the later years in comparison to the EEI. A similar trend is observed in Canada. This pattern is not surprising. In the earlier years of development, due to shifts to more energy-intensive industries and rapid development, the energy-GDP ratio is likely to decrease more slowly or increase in comparison to the intensity effect. As a country develops, shifts to less energy-intensive industries results in a rapidly decreasing energy-GDP ratio.
 
Literatur
Zurück zum Zitat Agrawala, S., Klasen, S., Moreno, R. A., Barreto, L., Cottier, T., Guan, D., Gutierrez-Espeleta, E. E., Gámez Vázquez, A. E., Jiang, L., Kim, Y. G., Lewis, J., Messouli, M., Rauscher, M., Uddin, N., & Venables, A. (2014). Regional development and cooperation. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, S. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlomer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom: Cambridge University Press. Agrawala, S., Klasen, S., Moreno, R. A., Barreto, L., Cottier, T., Guan, D., Gutierrez-Espeleta, E. E., Gámez Vázquez, A. E., Jiang, L., Kim, Y. G., Lewis, J., Messouli, M., Rauscher, M., Uddin, N., & Venables, A. (2014). Regional development and cooperation. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, S. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlomer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom: Cambridge University Press.
Zurück zum Zitat Andreoni, V., & Galmarini, S. (2012). Decoupling economic growth from carbon dioxide emissions: a decomposition analysis of Italian energy consumption. Energy, 44, 682–691.CrossRef Andreoni, V., & Galmarini, S. (2012). Decoupling economic growth from carbon dioxide emissions: a decomposition analysis of Italian energy consumption. Energy, 44, 682–691.CrossRef
Zurück zum Zitat Ang, B. W. (2004). Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 32(9), 1131–1139.CrossRef Ang, B. W. (2004). Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 32(9), 1131–1139.CrossRef
Zurück zum Zitat Ang, B. W. (2006). Monitoring changes in economy-wide energy efficiency: from energy–GDP ratio to composite efficiency index. Energy Policy, 34, 574–582.CrossRef Ang, B. W. (2006). Monitoring changes in economy-wide energy efficiency: from energy–GDP ratio to composite efficiency index. Energy Policy, 34, 574–582.CrossRef
Zurück zum Zitat Ang, B. W. (2015). LMDI decomposition approach: a guide for implementation. Energy Policy, 86, 233–238.CrossRef Ang, B. W. (2015). LMDI decomposition approach: a guide for implementation. Energy Policy, 86, 233–238.CrossRef
Zurück zum Zitat Ang, B. W., & Liu, N. (2007). Energy decomposition analysis: IEA model versus other methods. Energy Policy, 35, 1426–1432.CrossRef Ang, B. W., & Liu, N. (2007). Energy decomposition analysis: IEA model versus other methods. Energy Policy, 35, 1426–1432.CrossRef
Zurück zum Zitat Ang, B. W., & Mu, A. R. (2010). Construction of composite energy intensity indices for tracking energy efficiency trends. In E. Thomson, D. Yeo, & G. Pakiam (Eds.), Energy efficiency policy development in Southeast Asia and beyond (pp. 9–29). Singapore: Stallion Press. Ang, B. W., & Mu, A. R. (2010). Construction of composite energy intensity indices for tracking energy efficiency trends. In E. Thomson, D. Yeo, & G. Pakiam (Eds.), Energy efficiency policy development in Southeast Asia and beyond (pp. 9–29). Singapore: Stallion Press.
Zurück zum Zitat Ang, B. W., & Wang, H. (2015). Index decomposition analysis with multidimensional and multilevel energy data. Energy Economics, 51, 67–76.CrossRef Ang, B. W., & Wang, H. (2015). Index decomposition analysis with multidimensional and multilevel energy data. Energy Economics, 51, 67–76.CrossRef
Zurück zum Zitat Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRef Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRef
Zurück zum Zitat Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRef Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRef
Zurück zum Zitat Ang, B. W., Liu, F. L., & Chew, E. P. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.CrossRef Ang, B. W., Liu, F. L., & Chew, E. P. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.CrossRef
Zurück zum Zitat Ang, B. W., Liu, F. L., & Chung, H.-S. (2004). A generalized Fisher index approach to energy decomposition analysis. Energy Economics, 26(5), 757–763.CrossRef Ang, B. W., Liu, F. L., & Chung, H.-S. (2004). A generalized Fisher index approach to energy decomposition analysis. Energy Economics, 26(5), 757–763.CrossRef
Zurück zum Zitat Ang, B. W., Mu, A. R., & Zhou, P. (2010). Accounting frameworks for tracking energy efficiency trends. Energy Economics, 32(5), 1209–1219.CrossRef Ang, B. W., Mu, A. R., & Zhou, P. (2010). Accounting frameworks for tracking energy efficiency trends. Energy Economics, 32(5), 1209–1219.CrossRef
Zurück zum Zitat APERC. (2001). Energy efficiency indicators: a study of energy efficiency indicators in APEC economies. Tokyo: Asia Pacific Energy Research Centre. APERC. (2001). Energy efficiency indicators: a study of energy efficiency indicators in APEC economies. Tokyo: Asia Pacific Energy Research Centre.
Zurück zum Zitat Asian Development Bank. (2015). Sustainable energy for all—tracking progress in Asia and the Pacific: a summary report. Manila: Asian Development Bank. Asian Development Bank. (2015). Sustainable energy for all—tracking progress in Asia and the Pacific: a summary report. Manila: Asian Development Bank.
Zurück zum Zitat Bacon, R., & Kojima, M. (2009). Changes in CO 2 emissions from energy use: a multicountry decomposition analysis, oil, gas, and mining policy division working paper. Washington D.C.: World Bank. Bacon, R., & Kojima, M. (2009). Changes in CO 2 emissions from energy use: a multicountry decomposition analysis, oil, gas, and mining policy division working paper. Washington D.C.: World Bank.
Zurück zum Zitat Balezentis, A., Balezentis, T., & Streimikiene, D. (2011). The energy intensity in Lithuania during 1995-2009: a LMDI approach. Energy Policy, 39, 7322–7322.CrossRef Balezentis, A., Balezentis, T., & Streimikiene, D. (2011). The energy intensity in Lithuania during 1995-2009: a LMDI approach. Energy Policy, 39, 7322–7322.CrossRef
Zurück zum Zitat Bashmakov, I., & Myshak, A. (2014). Russian energy efficiency accounting system. Energy Efficiency, 7(5), 743–759.CrossRef Bashmakov, I., & Myshak, A. (2014). Russian energy efficiency accounting system. Energy Efficiency, 7(5), 743–759.CrossRef
Zurück zum Zitat Bataille, C., Nyober, J. (2005). Improvement of the OEE/DPAD decomposition methodology. Canada: M. K. Jaccard and Associates, Inc. for Natural Resource Canada’s Office of Energy Efficiency (OEE). Bataille, C., Nyober, J. (2005). Improvement of the OEE/DPAD decomposition methodology. Canada: M. K. Jaccard and Associates, Inc. for Natural Resource Canada’s Office of Energy Efficiency (OEE).
Zurück zum Zitat Belzer, D. B. (2014). A comprehensive system of energy intensity indicators for the U.S.: methods, data and key trends. USA: Pacific Northwest National Laboratory. Belzer, D. B. (2014). A comprehensive system of energy intensity indicators for the U.S.: methods, data and key trends. USA: Pacific Northwest National Laboratory.
Zurück zum Zitat Belzer, D. B., Bender, S. R., & Cort, K. A. (2017). A comprehensive system of energy intensity indicators for the U.S.: methods, data and key trends (rev 2). USA: Pacific Northwest National Laboratory.CrossRef Belzer, D. B., Bender, S. R., & Cort, K. A. (2017). A comprehensive system of energy intensity indicators for the U.S.: methods, data and key trends (rev 2). USA: Pacific Northwest National Laboratory.CrossRef
Zurück zum Zitat Che, N., & Pham, P. (2012). Economic analysis of end-use energy intensity in Australia. Canberra: Bureau of Resources and Energy Economics. Che, N., & Pham, P. (2012). Economic analysis of end-use energy intensity in Australia. Canberra: Bureau of Resources and Energy Economics.
Zurück zum Zitat Colinet, C. M. J., & Román, C. R. (2016). LMDI decomposition analysis of energy consumption in Andalusia (Spain) during 2003–2012: the energy efficiency policy implications. Energy Efficiency, 9(3), 807–823.CrossRef Colinet, C. M. J., & Román, C. R. (2016). LMDI decomposition analysis of energy consumption in Andalusia (Spain) during 2003–2012: the energy efficiency policy implications. Energy Efficiency, 9(3), 807–823.CrossRef
Zurück zum Zitat Cox, A., Trieu, L. H., Warr, S., & Rolph, C. (1997). Trends in Australian energy intensity, 1973-74 to 1994-95, ABARE Research Report 97.5. Canberra: Australian Bureau of Agricultural and Resource Economics. Cox, A., Trieu, L. H., Warr, S., & Rolph, C. (1997). Trends in Australian energy intensity, 1973-74 to 1994-95, ABARE Research Report 97.5. Canberra: Australian Bureau of Agricultural and Resource Economics.
Zurück zum Zitat de Freitas, L. C., & Kaneko, S. (2011). Decomposition of CO2 emissions change from energy consumption in Brazil: challenges and policy implications. Energy Policy, 39(3), 1495–1504.CrossRef de Freitas, L. C., & Kaneko, S. (2011). Decomposition of CO2 emissions change from energy consumption in Brazil: challenges and policy implications. Energy Policy, 39(3), 1495–1504.CrossRef
Zurück zum Zitat Dineen, D., Howley, M. (2016). Energy efficiency in Ireland. Dublin: Energy Policy Statistical Support Unit, Sustainable Energy Authority of Ireland. Dineen, D., Howley, M. (2016). Energy efficiency in Ireland. Dublin: Energy Policy Statistical Support Unit, Sustainable Energy Authority of Ireland.
Zurück zum Zitat Elliot, T., Duncan, J., & Field, B. (2016). Changes in energy use: New Zealand 1990-2011. Wellington: Energy Information and Modelling Group of the Ministry of Business, Innovation and Employment, and Energy Efficiency and Conservation Authority. Elliot, T., Duncan, J., & Field, B. (2016). Changes in energy use: New Zealand 1990-2011. Wellington: Energy Information and Modelling Group of the Ministry of Business, Innovation and Employment, and Energy Efficiency and Conservation Authority.
Zurück zum Zitat Energy Efficiency and Conservation Authority. (2003). First year report: energy efficiency and renewable energy performance in New Zealand. Wellington: Energy Efficiency and Conservation Authority. Energy Efficiency and Conservation Authority. (2003). First year report: energy efficiency and renewable energy performance in New Zealand. Wellington: Energy Efficiency and Conservation Authority.
Zurück zum Zitat Environment Canada. (2014). Canada’s emissions trends. Environment Canada, Canada. Environment Canada. (2014). Canada’s emissions trends. Environment Canada, Canada.
Zurück zum Zitat European Commission. (2017). 2017 assessment of the progress made by member states towards the national energy efficiency targets for 2020 and towards the implementation of the Energy Efficiency Directive as required by Article 24(3) of the Energy Efficiency Directive 2012/27/EU, report from the Commission to the European Parliament and the Council Brussels. European Commission. (2017). 2017 assessment of the progress made by member states towards the national energy efficiency targets for 2020 and towards the implementation of the Energy Efficiency Directive as required by Article 24(3) of the Energy Efficiency Directive 2012/27/EU, report from the Commission to the European Parliament and the Council Brussels.
Zurück zum Zitat European Commission Joint Research Centre. (2017). Assessing the progress towards the EU energy efficiency targets using index decomposition analysis. Luxembourg: Publications Office of the European Union. European Commission Joint Research Centre. (2017). Assessing the progress towards the EU energy efficiency targets using index decomposition analysis. Luxembourg: Publications Office of the European Union.
Zurück zum Zitat European Environment Agency. (2014a). Progress towards 2008-2012 Kyoto targets in Europe. Copenhagen: European Environment Agency. European Environment Agency. (2014a). Progress towards 2008-2012 Kyoto targets in Europe. Copenhagen: European Environment Agency.
Zurück zum Zitat European Environment Agency. (2014b). Why did greenhouse gas emissions decrease in the EU between 1990 and 2012? Denmark: European Environment Agency. European Environment Agency. (2014b). Why did greenhouse gas emissions decrease in the EU between 1990 and 2012? Denmark: European Environment Agency.
Zurück zum Zitat European Environment Agency. (2016). Analysis of key trends and drivers in greenhouse gas emissions in the EU between 1990 and 2014. Denmark: European Environment Agency. European Environment Agency. (2016). Analysis of key trends and drivers in greenhouse gas emissions in the EU between 1990 and 2014. Denmark: European Environment Agency.
Zurück zum Zitat Farla, J. C. M., & Blok, K. (2000). Energy efficiency and structural change in the Netherlands, 1980-1995. Journal of Industrial Ecology, 4(1), 93–117.CrossRef Farla, J. C. M., & Blok, K. (2000). Energy efficiency and structural change in the Netherlands, 1980-1995. Journal of Industrial Ecology, 4(1), 93–117.CrossRef
Zurück zum Zitat Federal Statistical Office. (2015). Air emissions accounts: decomposition of Switzerland’s fossil CO 2 emissions. Switzerland: Federal Statistical Office. Federal Statistical Office. (2015). Air emissions accounts: decomposition of Switzerland’s fossil CO 2 emissions. Switzerland: Federal Statistical Office.
Zurück zum Zitat Horowitz, M. J. (2008). The trouble with energy efficiency indexes: la aritmetic non e opinione. Energy Efficiency, 1(3), 199–210.CrossRef Horowitz, M. J. (2008). The trouble with energy efficiency indexes: la aritmetic non e opinione. Energy Efficiency, 1(3), 199–210.CrossRef
Zurück zum Zitat Hu, J. L., & Wang, S. C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34(17), 3206–3217.CrossRef Hu, J. L., & Wang, S. C. (2006). Total-factor energy efficiency of regions in China. Energy Policy, 34(17), 3206–3217.CrossRef
Zurück zum Zitat ICF International. (2016). Decomposition analysis of the changes in GHG emissions in the EU and member states. London: ICF International. ICF International. (2016). Decomposition analysis of the changes in GHG emissions in the EU and member states. London: ICF International.
Zurück zum Zitat IEA. (2007). Energy use in the new millennium. Paris: International Energy Agency. IEA. (2007). Energy use in the new millennium. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2008). Worldwide trends in energy use and efficiency—key insights from IEA indicator analysis. Paris: International Energy Agency. IEA. (2008). Worldwide trends in energy use and efficiency—key insights from IEA indicator analysis. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2012). World energy outlook 2012. Paris: International Energy Agency. IEA. (2012). World energy outlook 2012. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2014). Energy efficiency indicators: essentials for policy making. Paris: International Energy Agency. IEA. (2014). Energy efficiency indicators: essentials for policy making. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2015a). Energy efficiency market report 2015: market trends and medium-term prospects. Paris: International Energy Agency. IEA. (2015a). Energy efficiency market report 2015: market trends and medium-term prospects. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2015b). World energy outlook special report: energy and climate change. Paris: International Energy Agency. IEA. (2015b). World energy outlook special report: energy and climate change. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2017a). CO 2 emissions from fuel combustion: overview. Paris: International Energy Agency. IEA. (2017a). CO 2 emissions from fuel combustion: overview. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2017b). Energy efficiency 2017. Paris: International Energy Agency. IEA. (2017b). Energy efficiency 2017. Paris: International Energy Agency.
Zurück zum Zitat IEA. (2017c). IEA key world energy statistics. Paris: International Energy Agency. IEA. (2017c). IEA key world energy statistics. Paris: International Energy Agency.
Zurück zum Zitat Kerimray, A., Kolyagin, I., & Suleimenov, B. (2017). Analysis of the energy intensity of Kazakhstan: from data compilation to decomposition analysis. Energy Efficiency, 11(2), 1–21. Kerimray, A., Kolyagin, I., & Suleimenov, B. (2017). Analysis of the energy intensity of Kazakhstan: from data compilation to decomposition analysis. Energy Efficiency, 11(2), 1–21.
Zurück zum Zitat Korean Energy Economics Institute (2016). Energy efficiency indicators by sectors. Ulsan: Korean Energy Economics Institute. Access at http://www.kesis.net/. Accessed 7 February 2018. Korean Energy Economics Institute (2016). Energy efficiency indicators by sectors. Ulsan: Korean Energy Economics Institute. Access at http://​www.​kesis.​net/​. Accessed 7 February 2018.
Zurück zum Zitat Kumbaroglu, G. (2011). A sectoral decomposition analysis of Turkish CO2 emissions over 1990-2007. Energy, 36(5), 2419–2433.CrossRef Kumbaroglu, G. (2011). A sectoral decomposition analysis of Turkish CO2 emissions over 1990-2007. Energy, 36(5), 2419–2433.CrossRef
Zurück zum Zitat Lermit, J., & Jollands, N. (2001). Monitoring energy efficiency performance in New Zealand. New Zealand: Energy Efficiency and Conservation Authority. Lermit, J., & Jollands, N. (2001). Monitoring energy efficiency performance in New Zealand. New Zealand: Energy Efficiency and Conservation Authority.
Zurück zum Zitat Liu, X. Q., Ang, B. W., & Ong, H. L. (1992). The application of the Divisia index to the decomposition of changes in industrial energy consumption. Energy Journal, 13(4), 161–177.CrossRef Liu, X. Q., Ang, B. W., & Ong, H. L. (1992). The application of the Divisia index to the decomposition of changes in industrial energy consumption. Energy Journal, 13(4), 161–177.CrossRef
Zurück zum Zitat Mousavi, B., Lopez, N. S. A., Biona, J. B. M., Chiu, A. S. F., & Blesl, M. (2017). Driving forces of Iran’s CO2 emissions from energy consumption: an LMDI decomposition approach. Applied Energy, 206, 804–814.CrossRef Mousavi, B., Lopez, N. S. A., Biona, J. B. M., Chiu, A. S. F., & Blesl, M. (2017). Driving forces of Iran’s CO2 emissions from energy consumption: an LMDI decomposition approach. Applied Energy, 206, 804–814.CrossRef
Zurück zum Zitat O’ Mahony, T., Zhou, P., & Sweeney, J. (2012). The driving forces of change in energy-related CO2 emissions in Ireland: a multi-sectoral decomposition from 1990 to 2007. Energy Policy, 44, 256–267.CrossRef O’ Mahony, T., Zhou, P., & Sweeney, J. (2012). The driving forces of change in energy-related CO2 emissions in Ireland: a multi-sectoral decomposition from 1990 to 2007. Energy Policy, 44, 256–267.CrossRef
Zurück zum Zitat ODYSSEE-MURE. (2015). Understanding variation in energy consumption—methodological report. European Union: ODYSSEE-MURE. ODYSSEE-MURE. (2015). Understanding variation in energy consumption—methodological report. European Union: ODYSSEE-MURE.
Zurück zum Zitat ODYSSEE-MURE. (2016). Definition of ODEX indicators in ODYSSEE data base. European Union: ODYSEE-MURE. ODYSSEE-MURE. (2016). Definition of ODEX indicators in ODYSSEE data base. European Union: ODYSEE-MURE.
Zurück zum Zitat Office of Energy Efficiency. (2006). Energy efficiency trends in Canada 1990 to 2004. Ottawa: Natural Resources Canada. Office of Energy Efficiency. (2006). Energy efficiency trends in Canada 1990 to 2004. Ottawa: Natural Resources Canada.
Zurück zum Zitat Office of Energy Efficiency. (2011). Energy efficiency trends in Canada 1990 to 2009. Ottawa: Natural Resources Canada. Office of Energy Efficiency. (2011). Energy efficiency trends in Canada 1990 to 2009. Ottawa: Natural Resources Canada.
Zurück zum Zitat Office of Energy Efficiency. (2014). Improving energy performance in Canada—report to parliament under the Energy Efficiency Act for the fiscal year 2012–2013. Ottawa: Natural Resources Canada. Office of Energy Efficiency. (2014). Improving energy performance in Canada—report to parliament under the Energy Efficiency Act for the fiscal year 2012–2013. Ottawa: Natural Resources Canada.
Zurück zum Zitat Office of Energy Efficiency. (2016). Energy efficiency trends in Canada 1990 to 2013. Ottawa: Natural Resources Canada. Office of Energy Efficiency. (2016). Energy efficiency trends in Canada 1990 to 2013. Ottawa: Natural Resources Canada.
Zurück zum Zitat Office of Energy Efficiency. (2017). Improving energy performance in Canada—report to parliament under the Energy Efficiency Act for the fiscal year 2015–2016. Ottawa: Natural Resources Canada. Office of Energy Efficiency. (2017). Improving energy performance in Canada—report to parliament under the Energy Efficiency Act for the fiscal year 2015–2016. Ottawa: Natural Resources Canada.
Zurück zum Zitat Patterson, M. G. (1996). What is energy efficiency?: concepts, indicators and methodological issues. Energy Policy, 24(5), 377–390.CrossRef Patterson, M. G. (1996). What is energy efficiency?: concepts, indicators and methodological issues. Energy Policy, 24(5), 377–390.CrossRef
Zurück zum Zitat Pérez-Lombard, L., Ortiz, J., & Velázquez, D. (2013). Revisiting energy efficiency fundamentals. Energy Efficiency, 6(2), 239–254.CrossRef Pérez-Lombard, L., Ortiz, J., & Velázquez, D. (2013). Revisiting energy efficiency fundamentals. Energy Efficiency, 6(2), 239–254.CrossRef
Zurück zum Zitat Román, C. R., & Colinet, C. M. J. (2018). Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches. Energy Policy, 115, 409–417.CrossRef Román, C. R., & Colinet, C. M. J. (2018). Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches. Energy Policy, 115, 409–417.CrossRef
Zurück zum Zitat Sandu, S., & Petchey, R. (2009). End use energy intensity in the Australia economy, ABARE research report 09.17. Canberra: Australian Bureau of Agricultural and Resource Economics. Sandu, S., & Petchey, R. (2009). End use energy intensity in the Australia economy, ABARE research report 09.17. Canberra: Australian Bureau of Agricultural and Resource Economics.
Zurück zum Zitat Sandu, S., & Syed, A. (2008). Trends in energy intensity in Australian industry, ABARE report. Canberra: Australian Bureau of Agriculture and Resource Economics. Sandu, S., & Syed, A. (2008). Trends in energy intensity in Australian industry, ABARE report. Canberra: Australian Bureau of Agriculture and Resource Economics.
Zurück zum Zitat Shahiduzzaman, M., & Alam, K. (2013). Changes in energy efficiency in Australia: a decomposition of aggregate energy intensity using logarithmic mean Divisia approach. Energy Policy, 56, 341–351.CrossRef Shahiduzzaman, M., & Alam, K. (2013). Changes in energy efficiency in Australia: a decomposition of aggregate energy intensity using logarithmic mean Divisia approach. Energy Policy, 56, 341–351.CrossRef
Zurück zum Zitat Stanwix, G., Pham, P., & Ball, A. (2015). End-use energy intensity in Australia. Canberra: Department of Industry and Science. Stanwix, G., Pham, P., & Ball, A. (2015). End-use energy intensity in Australia. Canberra: Department of Industry and Science.
Zurück zum Zitat Su, B., & Ang, B. W. (2017). Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Economics, 65, 137–147.CrossRef Su, B., & Ang, B. W. (2017). Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Economics, 65, 137–147.CrossRef
Zurück zum Zitat Sun, J.W. (1998). Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics, 20(1), 85–100.CrossRef Sun, J.W. (1998). Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics, 20(1), 85–100.CrossRef
Zurück zum Zitat Tedesco, L., & Thorpe, S. (2003). Trends in Australian energy intensity 1973-74 to 2000-01, ABARE eReport 03.9 for the Ministerial Council On Energy. Canberra: Australian Bureau of Agricultural and Resource Economics. Tedesco, L., & Thorpe, S. (2003). Trends in Australian energy intensity 1973-74 to 2000-01, ABARE eReport 03.9 for the Ministerial Council On Energy. Canberra: Australian Bureau of Agricultural and Resource Economics.
Zurück zum Zitat The People’s Republic of China (2016). The People’s Republic of China first biennial update report on climate change. China. The People’s Republic of China (2016). The People’s Republic of China first biennial update report on climate change. China.
Zurück zum Zitat Torrie, R. D., Stone, C., & Layzell, D. B. (2016). Understanding energy systems change in Canada: 1. Decomposition of total energy intensity. Energy Economics, 56, 101–106.CrossRef Torrie, R. D., Stone, C., & Layzell, D. B. (2016). Understanding energy systems change in Canada: 1. Decomposition of total energy intensity. Energy Economics, 56, 101–106.CrossRef
Zurück zum Zitat UNEP. (2011). Development of a system of energy intensity indicators for the Egyptian economy, report for the Technical Secretariat of the Cabinet of Ministers. United Nations Environment Program. UNEP. (2011). Development of a system of energy intensity indicators for the Egyptian economy, report for the Technical Secretariat of the Cabinet of Ministers. United Nations Environment Program.
Zurück zum Zitat United Nations. (2008). International standard industrial classification of all economic activities revision 4. New York: United Nations Department of Economic and Social Affairs. United Nations. (2008). International standard industrial classification of all economic activities revision 4. New York: United Nations Department of Economic and Social Affairs.
Zurück zum Zitat Vivid Economics. (2013). Analysis of electricity consumption, electricity generation emissions intensity and economy-wide emissions, report prepared for the Climate Change Authority, Australia. Vivid Economics. (2013). Analysis of electricity consumption, electricity generation emissions intensity and economy-wide emissions, report prepared for the Climate Change Authority, Australia.
Zurück zum Zitat Ward, J., Marijs, C., Tumiawa, F., Salim, E. (2015). A coherent fiscal policy framework for promoting renewable energies and energy efficiency in Indonesia, report prepared for the Ministry of Finance, Indonesia. Vivid Economics. Ward, J., Marijs, C., Tumiawa, F., Salim, E. (2015). A coherent fiscal policy framework for promoting renewable energies and energy efficiency in Indonesia, report prepared for the Ministry of Finance, Indonesia. Vivid Economics.
Zurück zum Zitat World Bank. (2007). Growth and CO 2 emissions: how does India compare to other countries? Washington D.C.: World Bank. World Bank. (2007). Growth and CO 2 emissions: how does India compare to other countries? Washington D.C.: World Bank.
Zurück zum Zitat World Bank, & IEA. (2015). Sustainable energy for all 2015—progress toward sustainable energy. Washington D.C.: World Bank.CrossRef World Bank, & IEA. (2015). Sustainable energy for all 2015—progress toward sustainable energy. Washington D.C.: World Bank.CrossRef
Zurück zum Zitat Yi, B.-W., Xu, J.-H., & Fan, Y. (2016). Determining factors and diverse scenarios of CO2 emissions intensity reduction to achieve the 40–45% target by 2020 in China—a historical and prospective analysis for the period 2005–2020. Journal of Cleaner Production, 122, 87–101.CrossRef Yi, B.-W., Xu, J.-H., & Fan, Y. (2016). Determining factors and diverse scenarios of CO2 emissions intensity reduction to achieve the 40–45% target by 2020 in China—a historical and prospective analysis for the period 2005–2020. Journal of Cleaner Production, 122, 87–101.CrossRef
Metadaten
Titel
Tracking economy-wide energy efficiency using LMDI: approach and practices
verfasst von
Tian Goh
B. W. Ang
Publikationsdatum
25.05.2018
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 4/2019
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-018-9683-z

Weitere Artikel der Ausgabe 4/2019

Energy Efficiency 4/2019 Zur Ausgabe