Skip to main content
Erschienen in: Earth Science Informatics 2/2020

03.01.2020 | Research Article

A new algorithm for landslide geometric and deformation analysis supported by digital elevation models

verfasst von: Saied Pirasteh, Ghazal Shamsipour, Gouxiang Liu, Qing Zhu, YE Chengming

Erschienen in: Earth Science Informatics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometric analysis of a landslide boundary, in particular, automatic determination of the length and width of landslide and classification is a challenge. In this regard, developing an integrated automatic algorithm to determine and measure length, width, area, failure flow direction, mass displacement material, and to classify a landslide, all at one time seem to be a useful method for updating landslide inventory with reliable outcomes and efficient time for disaster management. This study presents a new automatic mapping and modelling algorithm for landslide geometric analysis include calculating landslide displacement and failure flow direction. We utilized LiDAR high resolution digital elevation model (DEM) (5 m), ASTER DEM (30 m), and Unmanned Aerial Vehicle (UAV) associated with ground truth observations to support the geometric deformation measurements. This study aims to refurbish generating landslide inventory dataset of 2015 by implementing the proposed algorithm in a quicker time than existing and traditional methods. The proposed algorithm is scripted in MATLAB based on the DEMs of before and after a landslide. The proposed new automatic method contributes measure, determine, and calculate (a) length, width, area, (b) the flow direction of the material movement, (c) the volume of the material displacement after the onset of failure, and (d) type of a landslide, in an acceptable accuracy performance. I considered two study areas (1) Alborz Mountain of Iran and (2) Madaling of Guizhou Province in China. The proposed algorithm was validated by (a) the ground truth observations, (b) the existing inventory dataset and (c) implementing the same data in ArcGIS 10.4 to compute the relative measurement errors. The relative error for area, length, width, and volume is 0.16%, 1.67%, 0.30%, 5.50%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ali SA, Pirasteh S (2004) Geological applications of landsat Enhanced Thematic Mapper (ETM) data and Geographic Information System (GIS): mapping and structural interpretation in south-west Iran, Zagros structural belt. Int J Remote Sens 25(21):4715–4727CrossRef Ali SA, Pirasteh S (2004) Geological applications of landsat Enhanced Thematic Mapper (ETM) data and Geographic Information System (GIS): mapping and structural interpretation in south-west Iran, Zagros structural belt. Int J Remote Sens 25(21):4715–4727CrossRef
Zurück zum Zitat Ali SA, Rangzan K, Pirasteh S (2003a) Remote sensing and GIS study of tectonics and net erosion rates in the Zagros structural belt, southwestern Iran. GISci Remote Sens 40(4):253–262 Ali SA, Rangzan K, Pirasteh S (2003a) Remote sensing and GIS study of tectonics and net erosion rates in the Zagros structural belt, southwestern Iran. GISci Remote Sens 40(4):253–262
Zurück zum Zitat Ali SA, Rangzan K, Pirasteh S (2003b) Use of digital elevation model for study of drainage morphometry and identification stability and saturation zones in relations to landslide assessments in parts of the Shahbazan area, SW Iran. Cartography 32(2):71–76CrossRef Ali SA, Rangzan K, Pirasteh S (2003b) Use of digital elevation model for study of drainage morphometry and identification stability and saturation zones in relations to landslide assessments in parts of the Shahbazan area, SW Iran. Cartography 32(2):71–76CrossRef
Zurück zum Zitat Burden RL, Faires JD (2011) Numerical analysis, 9th edn. Brooks/Cole, Boston Burden RL, Faires JD (2011) Numerical analysis, 9th edn. Brooks/Cole, Boston
Zurück zum Zitat Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43(1):27–29CrossRef Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43(1):27–29CrossRef
Zurück zum Zitat Gaidzik K, Ramírez-Herrera MT, Bunn M, Leshchinsky BA, Olsen M, Regmi NR (2017) Landslide manual and automated inventories, and susceptibility mapping using LIDAR in the forested mountains of Guerrero, Mexico. Geomat Nat Haz Risk 8(2):1054–1079CrossRef Gaidzik K, Ramírez-Herrera MT, Bunn M, Leshchinsky BA, Olsen M, Regmi NR (2017) Landslide manual and automated inventories, and susceptibility mapping using LIDAR in the forested mountains of Guerrero, Mexico. Geomat Nat Haz Risk 8(2):1054–1079CrossRef
Zurück zum Zitat Golovko D, Roessner S, Behling R, Kleinschmit B (2017) Automated derivation and spatio-temporal analysis of landslide properties in southern Kyrgyzstan. Nat Haz 85(3):1461–1488CrossRef Golovko D, Roessner S, Behling R, Kleinschmit B (2017) Automated derivation and spatio-temporal analysis of landslide properties in southern Kyrgyzstan. Nat Haz 85(3):1461–1488CrossRef
Zurück zum Zitat Guo J, Zeng C, Xie M, Meng Y, Zhang L (2018) Failure mechanism of Madaling landslide in Guizhou Province and stability analysis of accumulation body [J]. Saf Environ Eng 25(02):48–59 Guo J, Zeng C, Xie M, Meng Y, Zhang L (2018) Failure mechanism of Madaling landslide in Guizhou Province and stability analysis of accumulation body [J]. Saf Environ Eng 25(02):48–59
Zurück zum Zitat Hattanji T, Moriwaki H (2009) Morphometric analysis of relic landslides using detailed landslide distribution maps: implications for forecasting travel distance of future landslides. Geomorphology 103(3):447–454CrossRef Hattanji T, Moriwaki H (2009) Morphometric analysis of relic landslides using detailed landslide distribution maps: implications for forecasting travel distance of future landslides. Geomorphology 103(3):447–454CrossRef
Zurück zum Zitat Highland LM, Bobrowsky P, Kempthorne D, Myers MD (2008) The landslide handbook: a guide to understanding landslides. Department of the Interior U.S. Geological Survey, Reston Highland LM, Bobrowsky P, Kempthorne D, Myers MD (2008) The landslide handbook: a guide to understanding landslides. Department of the Interior U.S. Geological Survey, Reston
Zurück zum Zitat Kreyszig E, Kreyszig H, Norminton EJ (2011) Advanced engineering mathematics, 10th edn. Wiley, New York Kreyszig E, Kreyszig H, Norminton EJ (2011) Advanced engineering mathematics, 10th edn. Wiley, New York
Zurück zum Zitat Liu JK, Hsiao KH, Shih Peter TY (2012) A geomorphological model for landslide detection using airborne LiDAR data. J Mar Sci Technol 20(6):629–638 Liu JK, Hsiao KH, Shih Peter TY (2012) A geomorphological model for landslide detection using airborne LiDAR data. J Mar Sci Technol 20(6):629–638
Zurück zum Zitat Niculiță M (2015) Automatic extraction of landslide flow direction using geometric processing and DEMs. Geomorpho Geosci 10(12):201–203 Niculiță M (2015) Automatic extraction of landslide flow direction using geometric processing and DEMs. Geomorpho Geosci 10(12):201–203
Zurück zum Zitat Pirasteh S, Woodbridge K, Rizvi SM (2009) Geo-information technology (GiT) and tectonic signatures: the River Karun & Dez, Zagros Orogen in south-west Iran. Int J Remote Sens 30(1–2):389–404CrossRef Pirasteh S, Woodbridge K, Rizvi SM (2009) Geo-information technology (GiT) and tectonic signatures: the River Karun & Dez, Zagros Orogen in south-west Iran. Int J Remote Sens 30(1–2):389–404CrossRef
Zurück zum Zitat Su JG, Bork EW (2006) Influence of vegetation, slope and LiDAR sampling angle on DEM accuracy. Photogramm Eng Remote Sens 72:1265–1274CrossRef Su JG, Bork EW (2006) Influence of vegetation, slope and LiDAR sampling angle on DEM accuracy. Photogramm Eng Remote Sens 72:1265–1274CrossRef
Zurück zum Zitat Su Wen J, Stohr C (2000) Aerial photointerpretation of landslides along the Ohio and Mississippi Rivers. Environ Eng Geosci VI(4):311–323 Su Wen J, Stohr C (2000) Aerial photointerpretation of landslides along the Ohio and Mississippi Rivers. Environ Eng Geosci VI(4):311–323
Zurück zum Zitat Taylor Faith E, Malamud Bruce D, Witt A (2015) What shape is a landslide? Statistical patterns in landslide length to width ratio. Geophy Res Abstr 17:EGU2015-10191 EGU General Assembly Taylor Faith E, Malamud Bruce D, Witt A (2015) What shape is a landslide? Statistical patterns in landslide length to width ratio. Geophy Res Abstr 17:EGU2015-10191 EGU General Assembly
Zurück zum Zitat Travelletti J, Oppikofer T, Delacourt C, Malet J, Jaboyedoff M (2008) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int Arch Photogr Remote Sens 37(B5):485–490 Travelletti J, Oppikofer T, Delacourt C, Malet J, Jaboyedoff M (2008) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int Arch Photogr Remote Sens 37(B5):485–490
Zurück zum Zitat Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special report 176: landslides: analysis and control. National Academy of Science, Washington, DC, pp 11–33 Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special report 176: landslides: analysis and control. National Academy of Science, Washington, DC, pp 11–33
Metadaten
Titel
A new algorithm for landslide geometric and deformation analysis supported by digital elevation models
verfasst von
Saied Pirasteh
Ghazal Shamsipour
Gouxiang Liu
Qing Zhu
YE Chengming
Publikationsdatum
03.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Earth Science Informatics / Ausgabe 2/2020
Print ISSN: 1865-0473
Elektronische ISSN: 1865-0481
DOI
https://doi.org/10.1007/s12145-019-00437-5

Weitere Artikel der Ausgabe 2/2020

Earth Science Informatics 2/2020 Zur Ausgabe

Premium Partner