Skip to main content
Erschienen in: International Journal of Material Forming 2/2017

16.11.2015 | Original Research

Experimental and theoretical investigation of forming limit diagram for Ti-6Al-4 V alloy at warm condition

verfasst von: Nitin Kotkunde, Geetha Krishna, Shyam Krishna Shenoy, Amit Kumar Gupta, Swadesh Kumar Singh

Erschienen in: International Journal of Material Forming | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Forming limit diagram (FLD) is an important performance index to describe the maximum limit of principal strains that can be sustained by sheet metals till to the onset of localized necking. It is useful tool to access the forming severity of a drawing or stamping processes. In the present work, FLD has been determined experimentally for Ti-6Al-4 V alloy at 400 °C by conducting a hemispherical dome test with specimens of different widths. Additionally, theoretical FLDs have been determined using Marciniak Kuczynski (M-K) model. Various yield criteria namely: Von Mises, Hill 1948, Hill 1993 and Cazacu Barlat in combination with different hardening models viz., Hollomon power law (HPL), Johnson-Cook (JC), modified Johnson-Cook (m-JC), modified Arrhenius (m-Arr.), modified Zerilli–Armstrong (m-ZA) have been used in M-K analysis for theoretical FLD prediction. The material properties required for determination of yield criteria and hardening models constants have been calculated using uniaxial tensile tests. The predicted theoretical FLDs results are compared with experimental FLD. It can be observed that influence of yield criterion in M-K analysis for theoretical FLD prediction is predominant than the hardening model. Based on the results; it is observed that the theoretical FLD using Cazacu Barlat and Hill 1993 yield criteria with m-Arr. hardening model has a very good agreement with experimental FLD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li X, Guo G, Xiao J, Song N, Li D (2014) Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti–6Al–4 V alloy sheet. Mater Des 55:325–334CrossRef Li X, Guo G, Xiao J, Song N, Li D (2014) Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti–6Al–4 V alloy sheet. Mater Des 55:325–334CrossRef
2.
Zurück zum Zitat Kotkunde N, Krishnamurthy HN, Puranik P, Gupta AK, Singh SK (2014) Microstructure study and constitutive modeling of Ti–6Al–4 V alloy at elevated temperatures. Mater Des 54:96–103CrossRef Kotkunde N, Krishnamurthy HN, Puranik P, Gupta AK, Singh SK (2014) Microstructure study and constitutive modeling of Ti–6Al–4 V alloy at elevated temperatures. Mater Des 54:96–103CrossRef
3.
Zurück zum Zitat Kotkunde N, Deole AD, Gupta AK, Singh SK (2014) Comparative study of constitutive modeling for Ti–6Al–4 V alloy at low strain rates and elevated temperatures. Mater Des 55:999–1005CrossRef Kotkunde N, Deole AD, Gupta AK, Singh SK (2014) Comparative study of constitutive modeling for Ti–6Al–4 V alloy at low strain rates and elevated temperatures. Mater Des 55:999–1005CrossRef
4.
Zurück zum Zitat Kotkunde N, Deole AD, Gupta AK, Singh SK, Aditya B (2014) Failure and formability studies in warm deep drawing of Ti–6Al–4 V alloy. Mater Des 60:540–547CrossRef Kotkunde N, Deole AD, Gupta AK, Singh SK, Aditya B (2014) Failure and formability studies in warm deep drawing of Ti–6Al–4 V alloy. Mater Des 60:540–547CrossRef
5.
Zurück zum Zitat Hosford W, Canddell R (2014) Metal forming mechanics and metallurgy. Third edition, Cambridge University Press Hosford W, Canddell R (2014) Metal forming mechanics and metallurgy. Third edition, Cambridge University Press
6.
Zurück zum Zitat Joseph DB, Boyer R, Sanders D (2006) The Boeing Company. Forming of titanium and titanium alloys. ASM Handbook. 14B: metalworking: sheet forming Joseph DB, Boyer R, Sanders D (2006) The Boeing Company. Forming of titanium and titanium alloys. ASM Handbook. 14B: metalworking: sheet forming
7.
Zurück zum Zitat Kotkunde N, Deole AD, Gupta AK, Singh SK (2014) Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti–6Al–4 V alloy. Mater Des 63:336–344CrossRef Kotkunde N, Deole AD, Gupta AK, Singh SK (2014) Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti–6Al–4 V alloy. Mater Des 63:336–344CrossRef
8.
Zurück zum Zitat Odenberger E-L, Schill M, Oldenburg M (2013) Thermo-mechanical sheet metal forming of aero engine components in Ti–6Al–4 V—PART 2: constitutive modelling and validation. Int J Mater Form 6:403–416CrossRef Odenberger E-L, Schill M, Oldenburg M (2013) Thermo-mechanical sheet metal forming of aero engine components in Ti–6Al–4 V—PART 2: constitutive modelling and validation. Int J Mater Form 6:403–416CrossRef
9.
Zurück zum Zitat Kurukuri S, van den Boogaard AH et al (2009) Warm forming simulation of Al–Mg sheet. J Mater Process Technol 209:5636–645CrossRef Kurukuri S, van den Boogaard AH et al (2009) Warm forming simulation of Al–Mg sheet. J Mater Process Technol 209:5636–645CrossRef
10.
Zurück zum Zitat Butuc MC, Gracio JJ, Barata da Rocha A (2003) A theoretical study on forming limit diagrams prediction. J Mater Process Technol 142:714–724CrossRef Butuc MC, Gracio JJ, Barata da Rocha A (2003) A theoretical study on forming limit diagrams prediction. J Mater Process Technol 142:714–724CrossRef
11.
Zurück zum Zitat Dasappa P, Inal K, Mishra R (2012) The effects of anisotropic yield functions and their material parameters on prediction of forming limit diagrams. Int J Solids Struct 49:3528–3550CrossRef Dasappa P, Inal K, Mishra R (2012) The effects of anisotropic yield functions and their material parameters on prediction of forming limit diagrams. Int J Solids Struct 49:3528–3550CrossRef
12.
Zurück zum Zitat Keeler SP, Backofen WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM 56:25–48 Keeler SP, Backofen WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM 56:25–48
13.
Zurück zum Zitat Banabic D (2010) Sheet metal forming processes. Springer, Verlag Berlin HeidelbergCrossRef Banabic D (2010) Sheet metal forming processes. Springer, Verlag Berlin HeidelbergCrossRef
14.
Zurück zum Zitat Panich S, Barlat F, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Mater Des 51:756–66CrossRef Panich S, Barlat F, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Mater Des 51:756–66CrossRef
15.
Zurück zum Zitat Gang F, Qing-jun L, Li-ping L, Pan Z (2012) Comparative analysis between stress- and strain-based forming limit diagrams for aluminum alloy sheet 1060. Trans Nonferrous Met Soc China 22:343–49CrossRef Gang F, Qing-jun L, Li-ping L, Pan Z (2012) Comparative analysis between stress- and strain-based forming limit diagrams for aluminum alloy sheet 1060. Trans Nonferrous Met Soc China 22:343–49CrossRef
16.
Zurück zum Zitat Narayanasamy R, Sathiya Narayanan C (2007) Experimental analysis and evaluation of forming limit diagram for interstitial free steels. Mater Des 28:1490–1512CrossRef Narayanasamy R, Sathiya Narayanan C (2007) Experimental analysis and evaluation of forming limit diagram for interstitial free steels. Mater Des 28:1490–1512CrossRef
17.
Zurück zum Zitat Moshksar MM, Mansorzadeh S (2003) Determination of the forming limit diagram for Al 3105 sheet. J Mater Process Technol 141:138–142CrossRef Moshksar MM, Mansorzadeh S (2003) Determination of the forming limit diagram for Al 3105 sheet. J Mater Process Technol 141:138–142CrossRef
18.
Zurück zum Zitat Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des 31:4866–4875CrossRef Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des 31:4866–4875CrossRef
19.
Zurück zum Zitat Mishra NS, Mishra S, Ramaswamy V (1989) Analysis of the temperature dependence of strain-hardening behavior in high-strength steel. Metall Trans A 20A:2819–2829CrossRef Mishra NS, Mishra S, Ramaswamy V (1989) Analysis of the temperature dependence of strain-hardening behavior in high-strength steel. Metall Trans A 20A:2819–2829CrossRef
20.
Zurück zum Zitat Ravi Kumar D (2002) Formability analysis of extra-deep drawing steel. J Mater Process Technol 130–131:31–41CrossRef Ravi Kumar D (2002) Formability analysis of extra-deep drawing steel. J Mater Process Technol 130–131:31–41CrossRef
21.
Zurück zum Zitat Hecker SS (1975) Simple technique for determining forming limit curves. Sheet Met Ind 52:671–75 Hecker SS (1975) Simple technique for determining forming limit curves. Sheet Met Ind 52:671–75
22.
Zurück zum Zitat Singh SK, Ravi Kumar D (2008) Effect of process parameters on product surface finish and thickness variation in hydro-mechanical deep drawing. J Mater Process Technol 204:169–178CrossRef Singh SK, Ravi Kumar D (2008) Effect of process parameters on product surface finish and thickness variation in hydro-mechanical deep drawing. J Mater Process Technol 204:169–178CrossRef
23.
Zurück zum Zitat Kotkunde N, Aditya DD, Gupta AK, Singh SK (2015) Numerical analysis of warm deep drawing for Ti–6Al–4V alloy. Book Chapter in Advances in Material Forming and Joining Part of the series Topics in Mining, Metallurgy and Materials Engineering pp 109–139 Kotkunde N, Aditya DD, Gupta AK, Singh SK (2015) Numerical analysis of warm deep drawing for Ti–6Al–4V alloy. Book Chapter in Advances in Material Forming and Joining Part of the series Topics in Mining, Metallurgy and Materials Engineering pp 109–139
24.
Zurück zum Zitat Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society of London 193 (Series A): 281–297 Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society of London 193 (Series A): 281–297
25.
Zurück zum Zitat Xu S, Weinmann K (1997) Prediction of forming limit curves of sheet metals using Hill’s 1993 user-friendly yield criterion of anisotropic materials. Int J Mech Sci 40(9):913–925CrossRefMATH Xu S, Weinmann K (1997) Prediction of forming limit curves of sheet metals using Hill’s 1993 user-friendly yield criterion of anisotropic materials. Int J Mech Sci 40(9):913–925CrossRefMATH
26.
Zurück zum Zitat Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194CrossRefMATH Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194CrossRefMATH
27.
Zurück zum Zitat Lin YC, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733–1759CrossRef Lin YC, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733–1759CrossRef
28.
Zurück zum Zitat Gordon R, Johnson WHC (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48CrossRef Gordon R, Johnson WHC (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48CrossRef
29.
Zurück zum Zitat Gupta AK, Krishnamurthy HN, Singh Y, Prasad KM, Singh SK (2013) Development of constitutive models for dynamic strain aging regime in Austenitic stainless steel 304. Mater Des 45:616–627CrossRef Gupta AK, Krishnamurthy HN, Singh Y, Prasad KM, Singh SK (2013) Development of constitutive models for dynamic strain aging regime in Austenitic stainless steel 304. Mater Des 45:616–627CrossRef
30.
Zurück zum Zitat Lin YC, Chen M-S, Zhong J (2008) Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput Mater Sci 42:470–477CrossRef Lin YC, Chen M-S, Zhong J (2008) Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput Mater Sci 42:470–477CrossRef
Metadaten
Titel
Experimental and theoretical investigation of forming limit diagram for Ti-6Al-4 V alloy at warm condition
verfasst von
Nitin Kotkunde
Geetha Krishna
Shyam Krishna Shenoy
Amit Kumar Gupta
Swadesh Kumar Singh
Publikationsdatum
16.11.2015
Verlag
Springer Paris
Erschienen in
International Journal of Material Forming / Ausgabe 2/2017
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-015-1274-3

Weitere Artikel der Ausgabe 2/2017

International Journal of Material Forming 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.