Skip to main content
Erschienen in: International Journal of Material Forming 5/2021

29.10.2020 | Original Research

Numerical modeling and anvil design of high-speed forging process for railway axles

verfasst von: Yakun Xu, Yan Zhang, Xincun Zhuang, Zhongyuan Cao, Yuanhe Lu, Zhen Zhao

Erschienen in: International Journal of Material Forming | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Railway axles, which are an important component of railway vehicles, are generally manufactured using high-speed forging processes. To investigate the microstructure evolution and flow behavior during forging processes, a series of isothermal hot compression and heating tests were conducted in the temperature range of 900–1200 °C and strain rate range of 0.01–20 s−1. A strain-compensated Arrhenius constitutive relationship was identified for 25CrMo4 steel, and microstructure evolution kinetics, comprising dynamic recrystallization, metadynamic recrystallization, static recrystallization, and grain growth, were determined. A coupled thermomechanical–metallurgical numerical model was established for the high-speed forging of 25CrMo4 steel axles by using the TRANSVALOR Forge software package. The grain size evolution during the multipass high-speed forging process was predicted, and a full-scale axle was fabricated through high-speed forging to verify the predicted results. The predicted and experimentally observed grain sizes had good agreement. Finally, a series of geometric constraints are proposed for the design of round anvils. The reliability and applicability of the proposed constraints were validated by considering the surface quality and microstructure requirements as well as the forming force during chamfering. The results indicated that the proposed constraints can suitably guide the design of anvils for high-speed forging processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chen WJ, Chen H, Li CC, Li CC, Wang XL, Cai Q (2017) Microstructure and fatigue crack growth of EA4T steel in laser cladding remanufacturing. Eng Fail Anal 79:120–129CrossRef Chen WJ, Chen H, Li CC, Li CC, Wang XL, Cai Q (2017) Microstructure and fatigue crack growth of EA4T steel in laser cladding remanufacturing. Eng Fail Anal 79:120–129CrossRef
2.
Zurück zum Zitat Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 111:548–574CrossRef Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 111:548–574CrossRef
3.
Zurück zum Zitat Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul JD, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238(2):219–274CrossRef Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul JD, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238(2):219–274CrossRef
4.
Zurück zum Zitat Liu YG, Liu J, Li MQ (2017) Metadynamic recrystallization of 300M steel after isothermal compression. Mater High Temp 34(4):279–288CrossRef Liu YG, Liu J, Li MQ (2017) Metadynamic recrystallization of 300M steel after isothermal compression. Mater High Temp 34(4):279–288CrossRef
5.
Zurück zum Zitat Sellars CM, Whiteman JA (1979) Recrystallization and grain growth in hot rolling. Met Sci 13(3-4):187–194CrossRef Sellars CM, Whiteman JA (1979) Recrystallization and grain growth in hot rolling. Met Sci 13(3-4):187–194CrossRef
6.
Zurück zum Zitat Wang SL, Yang B, Zhang MX, Wu HC, Peng JT, Gao Y (2016) Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants. Ann Nucl Energy 87:176–185CrossRef Wang SL, Yang B, Zhang MX, Wu HC, Peng JT, Gao Y (2016) Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants. Ann Nucl Energy 87:176–185CrossRef
7.
Zurück zum Zitat Xu G, Wang LN, Li SQ, Wang L (2012) Hot deformation behavior of EA4T steel. Acta Metall Sin Lett 25:374–382 Xu G, Wang LN, Li SQ, Wang L (2012) Hot deformation behavior of EA4T steel. Acta Metall Sin Lett 25:374–382
8.
Zurück zum Zitat Huo YM, Wang BY, Lin JG (2012) Development of constitutive model of EA4T high-speed train shaft steel based on internal-state-variable method. Appl Mech Mater 189:31–35CrossRef Huo YM, Wang BY, Lin JG (2012) Development of constitutive model of EA4T high-speed train shaft steel based on internal-state-variable method. Appl Mech Mater 189:31–35CrossRef
9.
Zurück zum Zitat Hibbe P, Hirt G (2020) Analysis of the bond strength of voids closed by open-die forging. Int J Mater Form 13(1):117–126CrossRef Hibbe P, Hirt G (2020) Analysis of the bond strength of voids closed by open-die forging. Int J Mater Form 13(1):117–126CrossRef
10.
Zurück zum Zitat Jang YS, Ko DC, Kim BM (2000) Application of the finite element method to predict microstructure evolution in the hot forging of steel. J Mater Process Technol 101(1–3):85–94 Jang YS, Ko DC, Kim BM (2000) Application of the finite element method to predict microstructure evolution in the hot forging of steel. J Mater Process Technol 101(1–3):85–94
11.
Zurück zum Zitat Sherstnev P, Flitta I, Sommitsch C, Hacksteiner M (2008) The effect of the initial rolling temperature on the microstructure evolution during and after hot rolling of AA6082. Int J Mater Form 1:185–188CrossRef Sherstnev P, Flitta I, Sommitsch C, Hacksteiner M (2008) The effect of the initial rolling temperature on the microstructure evolution during and after hot rolling of AA6082. Int J Mater Form 1:185–188CrossRef
12.
Zurück zum Zitat Huo Y, Bai Q, Wang B, Lin J, Zhou J (2015) A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel. J Mater Process Technol 223:274–283CrossRef Huo Y, Bai Q, Wang B, Lin J, Zhou J (2015) A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel. J Mater Process Technol 223:274–283CrossRef
13.
Zurück zum Zitat Buteler DI, Neves PCU, Ramos LV, Santos CER, Souza RM, Sinatora A (2006) Effect of anvil geometry on the stretching of cylinders. J Mater Process Technol 179(1–3):50–55 Buteler DI, Neves PCU, Ramos LV, Santos CER, Souza RM, Sinatora A (2006) Effect of anvil geometry on the stretching of cylinders. J Mater Process Technol 179(1–3):50–55
14.
Zurück zum Zitat Dyja H, Banaszek G, Mróz S, Berski S (2004) Modelling of shape anvils in free hot forging of long products. J Mater Process Technol 157–158:131–137CrossRef Dyja H, Banaszek G, Mróz S, Berski S (2004) Modelling of shape anvils in free hot forging of long products. J Mater Process Technol 157–158:131–137CrossRef
15.
Zurück zum Zitat Du SW, Li YT, Song JJ (2015) Optimization of forging process parameters and anvil design for railway axle during high-speed forging. In: ASME 2015 international mechanical engineering congress and exposition. Pp IMECE2015–50695 Du SW, Li YT, Song JJ (2015) Optimization of forging process parameters and anvil design for railway axle during high-speed forging. In: ASME 2015 international mechanical engineering congress and exposition. Pp IMECE2015–50695
16.
Zurück zum Zitat Xu Y, Birnbaum P, Pilz S, Zhuang X, Zhao Z, Kräusel V (2019) Investigation of constitutive relationship and dynamic recrystallization behavior of 22MnB5 during hot deformation. Results Phys 14:102426CrossRef Xu Y, Birnbaum P, Pilz S, Zhuang X, Zhao Z, Kräusel V (2019) Investigation of constitutive relationship and dynamic recrystallization behavior of 22MnB5 during hot deformation. Results Phys 14:102426CrossRef
17.
Zurück zum Zitat Sellars CM, Davies CHJ (1979). Hot working and forming process, The Metal Society, pp 3–15 Sellars CM, Davies CHJ (1979). Hot working and forming process, The Metal Society, pp 3–15
18.
Zurück zum Zitat Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14(9):1136–1138CrossRef Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14(9):1136–1138CrossRef
19.
Zurück zum Zitat Jonas JJ, Sellars CM, Tegart WJMG (1969) Strength and structure under hot-working conditions. Metall Rev 14:1–24CrossRef Jonas JJ, Sellars CM, Tegart WJMG (1969) Strength and structure under hot-working conditions. Metall Rev 14:1–24CrossRef
20.
Zurück zum Zitat Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32CrossRef Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32CrossRef
21.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change. I: General theory J Chem Phys 7:1103–1112 Avrami M (1939) Kinetics of phase change. I: General theory J Chem Phys 7:1103–1112
22.
Zurück zum Zitat Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei J Chem Phys 8:212–224 Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei J Chem Phys 8:212–224
23.
Zurück zum Zitat Kong LX, Hodgson PD, Collinson DC (2000) Extrapolative prediction of the hot strength of austenitic steels with a combined constitutive and ANN model. J Mater Process Technol 102(1–3):84–89 Kong LX, Hodgson PD, Collinson DC (2000) Extrapolative prediction of the hot strength of austenitic steels with a combined constitutive and ANN model. J Mater Process Technol 102(1–3):84–89
24.
Zurück zum Zitat Poliak EI, Jonas JJ (1996) A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater 44(1):127–136CrossRef Poliak EI, Jonas JJ (1996) A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater 44(1):127–136CrossRef
25.
Zurück zum Zitat Quan GZ, Li YL, Zhang L, Wang X (2017) Evolution of grain refinement degree induced by dynamic recrystallization for Nimonic 80A during hot compression process and its FEM analysis. Vacuum 139:51–63CrossRef Quan GZ, Li YL, Zhang L, Wang X (2017) Evolution of grain refinement degree induced by dynamic recrystallization for Nimonic 80A during hot compression process and its FEM analysis. Vacuum 139:51–63CrossRef
26.
Zurück zum Zitat Chen L, Sun W, Lin J, Zhao G, Wang G (2018) Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process. Results Phys 12:784–792CrossRef Chen L, Sun W, Lin J, Zhao G, Wang G (2018) Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process. Results Phys 12:784–792CrossRef
27.
Zurück zum Zitat Sellars CM, Beynon J (1985). Microstructural development during hot rolling of titanium microalloyed steels, proceedings of international conference on high strength low alloy steels, pp. 142–150 Sellars CM, Beynon J (1985). Microstructural development during hot rolling of titanium microalloyed steels, proceedings of international conference on high strength low alloy steels, pp. 142–150
28.
Zurück zum Zitat Hodgson PD, Gibbs RK (1992) A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ Int 32(12):1329–1338CrossRef Hodgson PD, Gibbs RK (1992) A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ Int 32(12):1329–1338CrossRef
29.
Zurück zum Zitat Sun WP, Hawbolt EB (1997) Comparison between static and metadynamic recrystallization - an application to the hot rolling of steels. ISIJ Int 37(10):1000–1009CrossRef Sun WP, Hawbolt EB (1997) Comparison between static and metadynamic recrystallization - an application to the hot rolling of steels. ISIJ Int 37(10):1000–1009CrossRef
30.
Zurück zum Zitat Lin YC, Chen MS (2009) Study of microstructural evolution during static recrystallization in a low alloy steel. J Mater Sci 44(3):835–842CrossRef Lin YC, Chen MS (2009) Study of microstructural evolution during static recrystallization in a low alloy steel. J Mater Sci 44(3):835–842CrossRef
31.
Zurück zum Zitat Yanagida A, Yanagimoto J (2008) Formularization of softening fractions and related kinetics for static recrystallization using inverse analysis of double compression test. Mater Sci Eng A 487(1-2):510–517CrossRef Yanagida A, Yanagimoto J (2008) Formularization of softening fractions and related kinetics for static recrystallization using inverse analysis of double compression test. Mater Sci Eng A 487(1-2):510–517CrossRef
32.
Zurück zum Zitat Dong DQ, Chen F, Cui ZS (2017) Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation. J Manuf Process 29:18–28CrossRef Dong DQ, Chen F, Cui ZS (2017) Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation. J Manuf Process 29:18–28CrossRef
33.
Zurück zum Zitat Maccagno TM, Jonas JJ, Hodgson PD (1996) Spreadsheet modelling of grain size evolution during rod rolling. ISIJ Int 36(6):720–728CrossRef Maccagno TM, Jonas JJ, Hodgson PD (1996) Spreadsheet modelling of grain size evolution during rod rolling. ISIJ Int 36(6):720–728CrossRef
34.
Zurück zum Zitat Wang MT, Li XT, Du FS, Zheng YZ (2005) A coupled thermal-mechanical and microstructural simulation of the cross wedge rolling process and experimental verification. Mater Sci Eng A 391(1–2):305–312 Wang MT, Li XT, Du FS, Zheng YZ (2005) A coupled thermal-mechanical and microstructural simulation of the cross wedge rolling process and experimental verification. Mater Sci Eng A 391(1–2):305–312
35.
Zurück zum Zitat Ivaniski TM, Epp J, Zoch HW, Da Silva RA (2019) Austenitic grain size prediction in hot forging of a 20mncr5 steel by numerical simulation using the JMAK model for industrial applications. Mater Res 22:5CrossRef Ivaniski TM, Epp J, Zoch HW, Da Silva RA (2019) Austenitic grain size prediction in hot forging of a 20mncr5 steel by numerical simulation using the JMAK model for industrial applications. Mater Res 22:5CrossRef
36.
Zurück zum Zitat Zhang N, Wang BY, Lin JG (2012) Effect of cross wedge rolling on the microstructure of GH4169 alloy. Int J Miner Metall Mater 19(9):836–842CrossRef Zhang N, Wang BY, Lin JG (2012) Effect of cross wedge rolling on the microstructure of GH4169 alloy. Int J Miner Metall Mater 19(9):836–842CrossRef
37.
Zurück zum Zitat Kingdom U (2009). Metal forming data of ferrous alloys - deformation behaviour. New Ser VIII 2C1:1–5 Kingdom U (2009). Metal forming data of ferrous alloys - deformation behaviour. New Ser VIII 2C1:1–5
38.
Zurück zum Zitat Du SW, Sun RH, Li YT (2015) Effect of anvil structure on forming quality of railway axles. Suxing Gongcheng Xuebao/Journal Plast Eng 22:26–31 Du SW, Sun RH, Li YT (2015) Effect of anvil structure on forming quality of railway axles. Suxing Gongcheng Xuebao/Journal Plast Eng 22:26–31
39.
Zurück zum Zitat Wang S, Zhang M, Wu H, Yang B (2016) Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater Charact 118:92–101CrossRef Wang S, Zhang M, Wu H, Yang B (2016) Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater Charact 118:92–101CrossRef
40.
Zurück zum Zitat Zahiri SH, Davies CHJ, Hodgson PD (2005) A mechanical approach to quantify dynamic recrystallization in polycrystalline metals. Scr Mater 52:299–304CrossRef Zahiri SH, Davies CHJ, Hodgson PD (2005) A mechanical approach to quantify dynamic recrystallization in polycrystalline metals. Scr Mater 52:299–304CrossRef
41.
Zurück zum Zitat Wen DX, Lin YC, Zhou Y (2017) A new dynamic recrystallization kinetics model for a Nb containing Ni-Fe-Cr-base superalloy considering influences of initial δ phase. Vacuum 141:316–327CrossRef Wen DX, Lin YC, Zhou Y (2017) A new dynamic recrystallization kinetics model for a Nb containing Ni-Fe-Cr-base superalloy considering influences of initial δ phase. Vacuum 141:316–327CrossRef
42.
Zurück zum Zitat Sellars CM (1986). Annealing processes - recovery, recrystallization and grain growth. The 7. Risø international symposium on metallurgy and materials science, Risø, Denmark 8–12 September 1986 Sellars CM (1986). Annealing processes - recovery, recrystallization and grain growth. The 7. Risø international symposium on metallurgy and materials science, Risø, Denmark 8–12 September 1986
Metadaten
Titel
Numerical modeling and anvil design of high-speed forging process for railway axles
verfasst von
Yakun Xu
Yan Zhang
Xincun Zhuang
Zhongyuan Cao
Yuanhe Lu
Zhen Zhao
Publikationsdatum
29.10.2020
Verlag
Springer Paris
Erschienen in
International Journal of Material Forming / Ausgabe 5/2021
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-020-01590-9

Weitere Artikel der Ausgabe 5/2021

International Journal of Material Forming 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.