Skip to main content
Erschienen in: Metals and Materials International 7/2021

27.05.2020

Aluminum or Its Alloy Matrix Hybrid Nanocomposites

verfasst von: Subrata Mondal

Erschienen in: Metals and Materials International | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum or its alloys are widely used in automobile, aerospace, and marine due to their low density, good ductility, low cost, corrosion resistance etc. However, aluminum has several pit falls viz. poor strength, abrasion and wear resistance etc. These pit fall of aluminum can be improve by reinforcement of nanomaterials in the pure metal or alloy. Various types of nanomaterials can be used for the fabrication of light-weight aluminum/alloy matrix nanocomposites for high specific strength, improved wear and abrasion property, better corrosion resistance etc. Recently, there is a significant research interest for the fabrication of nanocomposites by using more than one reinforcing materials. This article presents an overview of various reinforcement materials used for the fabrication of aluminum or its alloy matrix based hybrid nanocomposites. Brief overview of metal matrix and specifically aluminum matrix nanocomposites are included in the manuscript. Various processing routes for the fabrication of hybrid nanocomposites are explained. Properties of hybrid nanocomposites with respect to the nano-reinforcement types, reinforcement concentration, morphology and microstructure are discussed. Further, potential applications and future trends of aluminum or its alloy matrix hybrid nanocomposites are presented. Finally, the article has been concluded with several future scopes of research in the area of aluminum/alloy matrix based hybrid nanocomposites.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Arunachalam, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting—furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019) R. Arunachalam, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting—furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019)
2.
Zurück zum Zitat N.K. Bhoi, H. Singh, S. Pratap, Developments in the aluminum metal matrix composites reinforced by micro/nano particles—a review. J. Compos. Mater. 54(6), 813–833 (2020) N.K. Bhoi, H. Singh, S. Pratap, Developments in the aluminum metal matrix composites reinforced by micro/nano particles—a review. J. Compos. Mater. 54(6), 813–833 (2020)
3.
Zurück zum Zitat N. Radhika, R. Karthik, S. Gowtham, S. Ramkumar, Synthesis of Cu-10Sn/SiC metal matrix composites and experimental investigation of its adhesive wear behaviour. Silicon 11(1), 345–354 (2019) N. Radhika, R. Karthik, S. Gowtham, S. Ramkumar, Synthesis of Cu-10Sn/SiC metal matrix composites and experimental investigation of its adhesive wear behaviour. Silicon 11(1), 345–354 (2019)
4.
Zurück zum Zitat P. Antil, S. Singh, A. Manna, Analysis on effect of electroless coated SiCp on mechanical properties of polymer matrix composites. Part. Sci. Technol. 37(7), 787–794 (2019) P. Antil, S. Singh, A. Manna, Analysis on effect of electroless coated SiCp on mechanical properties of polymer matrix composites. Part. Sci. Technol. 37(7), 787–794 (2019)
5.
Zurück zum Zitat Y.V. Petukhova, A.A. Kudinova, N.P. Bobrysheva, O.V. Levin, M.G. Osmolowsky, O.M. Osmolovskaya, Polymer composites containing dispersed VO2 of various polymorphs: Effects of polymer matrix on functional properties. Mater. Chem. Phys. 235, 121752 (2019) Y.V. Petukhova, A.A. Kudinova, N.P. Bobrysheva, O.V. Levin, M.G. Osmolowsky, O.M. Osmolovskaya, Polymer composites containing dispersed VO2 of various polymorphs: Effects of polymer matrix on functional properties. Mater. Chem. Phys. 235, 121752 (2019)
6.
Zurück zum Zitat P. Balamurugan, M. Uthayakumar, M. Niemczewska-Wojcik, Wear studies of copper-fly ash composite under dry sliding conditions. Mater. Res. Express 6(10), 1065d5 (2019) P. Balamurugan, M. Uthayakumar, M. Niemczewska-Wojcik, Wear studies of copper-fly ash composite under dry sliding conditions. Mater. Res. Express 6(10), 1065d5 (2019)
7.
Zurück zum Zitat Y. Song, J.L. Fan, S. Wu, J.X. Liu, C. Zhang, Y.W. Li, Effect of carbon-fibre powder on friction and wear properties of copper-matrix composites. Mater. Sci. Technol. 36(1), 92–99 (2020) Y. Song, J.L. Fan, S. Wu, J.X. Liu, C. Zhang, Y.W. Li, Effect of carbon-fibre powder on friction and wear properties of copper-matrix composites. Mater. Sci. Technol. 36(1), 92–99 (2020)
8.
Zurück zum Zitat J. Kim, Tensile fracture behavior and characterization of ceramic matrix composites. Materials 12(18), 2997 (2019) J. Kim, Tensile fracture behavior and characterization of ceramic matrix composites. Materials 12(18), 2997 (2019)
9.
Zurück zum Zitat M. Li et al., Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater. Charact. 140, 172–178 (2018) M. Li et al., Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater. Charact. 140, 172–178 (2018)
10.
Zurück zum Zitat J.M. Mistry, P.P. Gohil, Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization. Sci. Eng. Compos. Mater. 25(4), 633–647 (2018) J.M. Mistry, P.P. Gohil, Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization. Sci. Eng. Compos. Mater. 25(4), 633–647 (2018)
11.
Zurück zum Zitat G. Arora, S. Sharma, A review on monolithic and hybrid metal-matrix composites reinforced with industrial-agro wastes. J. Braz. Soc. Mech. Sci. Eng. Rev. 39(11), 4819–4835 (2017) G. Arora, S. Sharma, A review on monolithic and hybrid metal-matrix composites reinforced with industrial-agro wastes. J. Braz. Soc. Mech. Sci. Eng. Rev. 39(11), 4819–4835 (2017)
12.
Zurück zum Zitat S. Basavarajappa, G. Chandramohan, K.V.N. Rao, R. Radhakrishanan, V. Krishnaraj, Turning of particulate metal matrix composites—review and discussion. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(7), 1189–1204 (2006) S. Basavarajappa, G. Chandramohan, K.V.N. Rao, R. Radhakrishanan, V. Krishnaraj, Turning of particulate metal matrix composites—review and discussion. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(7), 1189–1204 (2006)
13.
Zurück zum Zitat K.S. Munir, P. Kingshott, C. Wen, Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit. Rev. Solid State Mater. Sci. 40(1), 38–55 (2015) K.S. Munir, P. Kingshott, C. Wen, Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit. Rev. Solid State Mater. Sci. 40(1), 38–55 (2015)
14.
Zurück zum Zitat S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55(1), 41–64 (2010) S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55(1), 41–64 (2010)
15.
Zurück zum Zitat A. Dey, K.M. Pandey, Magnesium metal matrix composites—a review. Rev. Adv. Mater. Sci. 42(1), 58–67 (2015) A. Dey, K.M. Pandey, Magnesium metal matrix composites—a review. Rev. Adv. Mater. Sci. 42(1), 58–67 (2015)
16.
Zurück zum Zitat R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles-a review. Metals 4(1), 65–83 (2014) R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles-a review. Metals 4(1), 65–83 (2014)
17.
Zurück zum Zitat S. Sharma, A. Handa, S.S. Singh, D. Verma, Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-Graphene-AZ31 magnesium. J. Magnesium Alloys 7(3), 487–500 (2019) S. Sharma, A. Handa, S.S. Singh, D. Verma, Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-Graphene-AZ31 magnesium. J. Magnesium Alloys 7(3), 487–500 (2019)
18.
Zurück zum Zitat A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 62(5), 241–302 (2017) A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 62(5), 241–302 (2017)
19.
Zurück zum Zitat D.S. Zhou, F. Qiu, H.Y. Wang, Q.C. Jiang, Manufacture of nano-sized particle-reinforced metal matrix composites: a review. Acta Metall. Sin. Engl. Lett. 27(5), 798–805 (2014) D.S. Zhou, F. Qiu, H.Y. Wang, Q.C. Jiang, Manufacture of nano-sized particle-reinforced metal matrix composites: a review. Acta Metall. Sin. Engl. Lett. 27(5), 798–805 (2014)
20.
Zurück zum Zitat B.V. Ramnath et al., Aluminum metal matrix composites—a review. Rev. Adv. Mater. Sci. 38(1), 55–60 (2014) B.V. Ramnath et al., Aluminum metal matrix composites—a review. Rev. Adv. Mater. Sci. 38(1), 55–60 (2014)
21.
Zurück zum Zitat I. Carneiro, F. Viana, M.F. Vieira, J.V. Fernandes, S. Simoes, EBSD analysis of metal matrix nanocomposite microstructure produced by powder metallurgy. Nanomaterials 9(6), Art No 878, (2019) I. Carneiro, F. Viana, M.F. Vieira, J.V. Fernandes, S. Simoes, EBSD analysis of metal matrix nanocomposite microstructure produced by powder metallurgy. Nanomaterials 9(6), Art No 878, (2019)
22.
Zurück zum Zitat N. Khobragade, K. Sikdar, B. Kumar, S. Bera, D. Roy, Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J. Alloys Compd. 776, 123–132 (2019) N. Khobragade, K. Sikdar, B. Kumar, S. Bera, D. Roy, Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J. Alloys Compd. 776, 123–132 (2019)
23.
Zurück zum Zitat Z.D. Wang, X.W. Wang, Q.S. Wang, I. Shih, J.J. Xu, Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy. Nanotechnology 20(7), 075605 (2009) Z.D. Wang, X.W. Wang, Q.S. Wang, I. Shih, J.J. Xu, Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy. Nanotechnology 20(7), 075605 (2009)
24.
Zurück zum Zitat H. Dieringa et al., Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability. Metals 7(10), 388 (2017) H. Dieringa et al., Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability. Metals 7(10), 388 (2017)
25.
Zurück zum Zitat K.S. Tun, M. Gupta, Effect of heating rate during hybrid microwave sintering on the tensile properties of magnesium and Mg/Y2O3 nanocomposite. J. Alloys Compd. 466(1–2), 140–145 (2008) K.S. Tun, M. Gupta, Effect of heating rate during hybrid microwave sintering on the tensile properties of magnesium and Mg/Y2O3 nanocomposite. J. Alloys Compd. 466(1–2), 140–145 (2008)
26.
Zurück zum Zitat S.F. Hassan, S. Zabiullah, N. Al-Aqeeli, M. Gupta, Magnesium nanocomposite: effect of melt dispersion of different oxides nano particles. J. Mater. Res. 31(1), 100–108 (2016) S.F. Hassan, S. Zabiullah, N. Al-Aqeeli, M. Gupta, Magnesium nanocomposite: effect of melt dispersion of different oxides nano particles. J. Mater. Res. 31(1), 100–108 (2016)
27.
Zurück zum Zitat K.B. Nie, X.J. Wang, L. Xu, K. Wu, X.S. Hu, M.Y. Zheng, Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater. Des. 36, 199–205 (2012) K.B. Nie, X.J. Wang, L. Xu, K. Wu, X.S. Hu, M.Y. Zheng, Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater. Des. 36, 199–205 (2012)
28.
Zurück zum Zitat M. Arab, S.P.H. Marashi, Graphene nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: microstructural, mechanical and tribological properties. Tribol. Lett. 66(4), 156 (2018) M. Arab, S.P.H. Marashi, Graphene nanoplatelet (GNP)-incorporated AZ31 magnesium nanocomposite: microstructural, mechanical and tribological properties. Tribol. Lett. 66(4), 156 (2018)
29.
Zurück zum Zitat J.X. Zhou, L.Y. Ren, X.Y. Geng, L. Fang, H. Hu, As-cast magnesium AM60-based hybrid nanocomposite containing alumina fibres and nanoparticles: microstructure and tensile behavior. Mater. Sci. Eng. 740, 305–314 (2019) J.X. Zhou, L.Y. Ren, X.Y. Geng, L. Fang, H. Hu, As-cast magnesium AM60-based hybrid nanocomposite containing alumina fibres and nanoparticles: microstructure and tensile behavior. Mater. Sci. Eng. 740, 305–314 (2019)
30.
Zurück zum Zitat S.F. Hassan, A.M. Al-Qutub, S. Zabiullah, K.S. Tun, M. Gupta, Effect of increasingly metallized hybrid reinforcement on the wear mechanisms of magnesium nanocomposite. Bull. Mater. Sci. 39(4), 1101–1107 (2016) S.F. Hassan, A.M. Al-Qutub, S. Zabiullah, K.S. Tun, M. Gupta, Effect of increasingly metallized hybrid reinforcement on the wear mechanisms of magnesium nanocomposite. Bull. Mater. Sci. 39(4), 1101–1107 (2016)
31.
Zurück zum Zitat S.F. Hassan, K.S. Tun, F. Patel, N. Al-Aqeeli, M. Gupta, Microwave sintered magnesium nanocomposites: hybrid (Y2O3+Ni) nano-size reinforcement and tensile properties. Adv. Compos. Lett. 25(4), 103–107 (2016) S.F. Hassan, K.S. Tun, F. Patel, N. Al-Aqeeli, M. Gupta, Microwave sintered magnesium nanocomposites: hybrid (Y2O3+Ni) nano-size reinforcement and tensile properties. Adv. Compos. Lett. 25(4), 103–107 (2016)
32.
Zurück zum Zitat S.F. Hassan, N. Al-Aqeeli, Z.M. Gasem, K.S. Tun, M. Gupta, Magnesium nanocomposite: increasing copperisation effect on high temperature tensile properties. Powder Metall. 59(1), 66–72 (2016) S.F. Hassan, N. Al-Aqeeli, Z.M. Gasem, K.S. Tun, M. Gupta, Magnesium nanocomposite: increasing copperisation effect on high temperature tensile properties. Powder Metall. 59(1), 66–72 (2016)
33.
Zurück zum Zitat M. Leparoux et al., Solid state processing of aluminum matrix composites reinforced with nanoparticulate materials. Adv. Eng. Mater. 20(11), 1800401 (2018) M. Leparoux et al., Solid state processing of aluminum matrix composites reinforced with nanoparticulate materials. Adv. Eng. Mater. 20(11),  1800401 (2018)
34.
Zurück zum Zitat T. Laha, Y. Chen, D. Lahiri, A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos. Part A Appl. Sci. Manuf. 40(5), 589–594 (2009) T. Laha, Y. Chen, D. Lahiri, A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos. Part A Appl. Sci. Manuf. 40(5), 589–594 (2009)
35.
Zurück zum Zitat K. Song, V. Dabhade, and W. Z. Misiolek, "Mixing studies of aluminum and CNT powders in the process of nanocomposite fabrication" Steel Research International, Article; Proceedings Paper pp. 563–569 (2008). K. Song, V. Dabhade, and W. Z. Misiolek, "Mixing studies of aluminum and CNT powders in the process of nanocomposite fabrication" Steel Research International, Article; Proceedings Paper pp. 563–569 (2008).
36.
Zurück zum Zitat T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal, Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater. 55(3), 1059–1066 (2007) T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal, Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater. 55(3), 1059–1066 (2007)
37.
Zurück zum Zitat T. Laha, Y. Liu, A. Agarwal, Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming. J. Nanosci. Nanotechnol. 7(2), 515–524 (2007) T. Laha, Y. Liu, A. Agarwal, Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming. J. Nanosci. Nanotechnol. 7(2), 515–524 (2007)
38.
Zurück zum Zitat S.M. Ghalehbandi, M. Malaki, M. Gupta, Accumulative roll bonding-a review. Appl. Sci. Basel 9(17), 3627 (2019) S.M. Ghalehbandi, M. Malaki, M. Gupta, Accumulative roll bonding-a review. Appl. Sci. Basel 9(17), 3627 (2019)
39.
Zurück zum Zitat Z.Y. Xu et al., Carbon nanotube-reinforced aluminum matrix composites enhanced by grain refinement and in situ precipitation. J. Mater. Sci. 54(11), 8655–8664 (2019) Z.Y. Xu et al., Carbon nanotube-reinforced aluminum matrix composites enhanced by grain refinement and in situ precipitation. J. Mater. Sci. 54(11), 8655–8664 (2019)
40.
Zurück zum Zitat S. Simoes, F. Viana, M.A.L. Reis, M.F. Vieira, Microstructural characterization of aluminum-carbon nanotube nanocomposites produced using different dispersion methods. Microsc. Microanal. 22(3), 725–732 (2016) S. Simoes, F. Viana, M.A.L. Reis, M.F. Vieira, Microstructural characterization of aluminum-carbon nanotube nanocomposites produced using different dispersion methods. Microsc. Microanal. 22(3), 725–732 (2016)
41.
Zurück zum Zitat F. Ostovan et al., Nanomechanical behavior of multi-walled carbon nanotubes particulate reinforced aluminum nanocomposites prepared by ball milling. Materials 9(3), 140 (2016) F. Ostovan et al., Nanomechanical behavior of multi-walled carbon nanotubes particulate reinforced aluminum nanocomposites prepared by ball milling. Materials 9(3),  140 (2016)
42.
Zurück zum Zitat A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng. 508(1–2), 167–173 (2009) A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng. 508(1–2), 167–173 (2009)
43.
Zurück zum Zitat H. Ramezanalizadeh, M. Emamy, M. Shokouhimehr, A novel aluminum based nanocomposite with high strength and good ductility. J. Alloys Compd. 649, 461–473 (2015) H. Ramezanalizadeh, M. Emamy, M. Shokouhimehr, A novel aluminum based nanocomposite with high strength and good ductility. J. Alloys Compd. 649, 461–473 (2015)
44.
Zurück zum Zitat K. Choi, J. Seo, D. Bae, H. Choi, Mechanical properties of aluminum-based nanocomposite reinforced with fullerenes. Trans. Nonferrous Met. Soc. China. 24, S47–S52 (2014) K. Choi, J. Seo, D. Bae, H. Choi, Mechanical properties of aluminum-based nanocomposite reinforced with fullerenes. Trans. Nonferrous Met. Soc. China. 24, S47–S52 (2014)
45.
Zurück zum Zitat H.G.P. Kumar et al., Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications. Mater. Today Commun. 16, 81–89 (2018) H.G.P. Kumar et al., Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications. Mater. Today Commun. 16, 81–89 (2018)
46.
Zurück zum Zitat U. Cavdar, O. Akkurt, The effect of sintering on the microstructure, hardness, and tribological behavior of aluminum-graphene nanoplatelet powder composites. Powder Metall. Met. Ceram. 57(5–6), 265–271 (2018) U. Cavdar, O. Akkurt, The effect of sintering on the microstructure, hardness, and tribological behavior of aluminum-graphene nanoplatelet powder composites. Powder Metall. Met. Ceram. 57(5–6), 265–271 (2018)
47.
Zurück zum Zitat D.S. Li, Y. Ye, X.J. Liao, Q.H. Qin, A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11(3), 1642–1650 (2018) D.S. Li, Y. Ye, X.J. Liao, Q.H. Qin, A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11(3), 1642–1650 (2018)
48.
Zurück zum Zitat H. Tazari, M.H. Siadati, Synthesis and mechanical properties of aluminum alloy 5083/SiCnp nanocomposites. J. Alloys Compd. 729, 960–969 (2017) H. Tazari, M.H. Siadati, Synthesis and mechanical properties of aluminum alloy 5083/SiCnp nanocomposites. J. Alloys Compd. 729, 960–969 (2017)
49.
Zurück zum Zitat H.K. Issa, A. Taherizadeh, A. Maleki, A. Ghaei, Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes. Ceram. Int. 43(17), 14582–14592 (2017) H.K. Issa, A. Taherizadeh, A. Maleki, A. Ghaei, Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes. Ceram. Int. 43(17), 14582–14592 (2017)
50.
Zurück zum Zitat S. Kandemir, Effects of TiB2 nanoparticle content on the microstructure and mechanical properties of aluminum matrix nanocomposites. Mater. Test. 59(10), 844–852 (2017) S. Kandemir, Effects of TiB2 nanoparticle content on the microstructure and mechanical properties of aluminum matrix nanocomposites. Mater. Test. 59(10), 844–852 (2017)
51.
Zurück zum Zitat H.R. Ezatpour, M.T. Parizi, S.A. Sajjadi, G.R. Ebrahimi, A. Chaichi, Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles. Mater. Chem. Phys. 178, 119–127 (2016) H.R. Ezatpour, M.T. Parizi, S.A. Sajjadi, G.R. Ebrahimi, A. Chaichi, Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles. Mater. Chem. Phys. 178, 119–127 (2016)
52.
Zurück zum Zitat H.R. Ezatpour, A. Chaichi, S.A. Sajjadi, The effect of Al2O3-nanoparticles as the reinforcement additive on the hot deformation behavior of 7075 aluminum alloy. Mater. Des. 88, 1049–1056 (2015) H.R. Ezatpour, A. Chaichi, S.A. Sajjadi, The effect of Al2O3-nanoparticles as the reinforcement additive on the hot deformation behavior of 7075 aluminum alloy. Mater. Des. 88, 1049–1056 (2015)
53.
Zurück zum Zitat A. Mazahery, M.O. Shabani, Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J. Compos. Mater. 45(24), 2579–2586 (2011) A. Mazahery, M.O. Shabani, Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J. Compos. Mater. 45(24), 2579–2586 (2011)
54.
Zurück zum Zitat H. Kwon, H. Kurita, M. Leparoux, A. Kawasaki, Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion. J. Nanosci. Nanotechnol. 11(5), 4119–4126 (2011) H. Kwon, H. Kurita, M. Leparoux, A. Kawasaki, Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion. J. Nanosci. Nanotechnol. 11(5), 4119–4126 (2011)
55.
Zurück zum Zitat J. Hemanth, Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater. Sci. Eng. 507(1–2), 110–113 (2009) J. Hemanth, Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater. Sci. Eng. 507(1–2), 110–113 (2009)
56.
Zurück zum Zitat K.S.R. Raju, V.R. Raju, P.R.M. Raju, S. Rajesh, G. Partha, Enhancement of the mechanical properties of an aluminum metal matrix nanocomposite by the hybridization technique. J. Mater. Res. Technol. Jmr&T 5(3), 241–249 (2016) K.S.R. Raju, V.R. Raju, P.R.M. Raju, S. Rajesh, G. Partha, Enhancement of the mechanical properties of an aluminum metal matrix nanocomposite by the hybridization technique. J. Mater. Res. Technol. Jmr&T 5(3), 241–249 (2016)
57.
Zurück zum Zitat X. Zhang et al., Regulation of interface between carbon nanotubes-aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites. Carbon 155, 686–696 (2019) X. Zhang et al., Regulation of interface between carbon nanotubes-aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites. Carbon 155, 686–696 (2019)
58.
Zurück zum Zitat N. Nouri, S. Ziaei-Rad, S. Adibi, F. Karimzadeh, Fabrication and mechanical property prediction of carbon nanotube reinforced Aluminum nanocomposites. Mater. Des. 34, 1–14 (2012) N. Nouri, S. Ziaei-Rad, S. Adibi, F. Karimzadeh, Fabrication and mechanical property prediction of carbon nanotube reinforced Aluminum nanocomposites. Mater. Des. 34, 1–14 (2012)
59.
Zurück zum Zitat M. Sharma, V. Sharma, Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int. J. Miner. Metall. Mater. 23(2), 222–233 (2016) M. Sharma, V. Sharma, Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite. Int. J. Miner. Metall. Mater. 23(2), 222–233 (2016)
60.
Zurück zum Zitat E.I. Salama, A. Abbas, A.M.K. Esawi, Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Compos. Part a Appl. Sci. Manuf. 99, 84–93 (2017) E.I. Salama, A. Abbas, A.M.K. Esawi, Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Compos. Part a Appl. Sci. Manuf. 99, 84–93 (2017)
61.
Zurück zum Zitat C.J. Li et al., Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites. J. Mater. Res. 31(23), 3757–3765 (2016) C.J. Li et al., Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites. J. Mater. Res. 31(23), 3757–3765 (2016)
62.
Zurück zum Zitat A. Mazahery, M.O. Shabani, Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol. 217, 558–565 (2012) A. Mazahery, M.O. Shabani, Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol. 217, 558–565 (2012)
63.
Zurück zum Zitat L. Poovazhagan, K. Kalaichelvan, T. Sornakumar, Processing and performance characteristics of aluminum-nano boron carbide metal matrix nanocomposites. Mater. Manuf. Process. 31(10), 1275–1285 (2016) L. Poovazhagan, K. Kalaichelvan, T. Sornakumar, Processing and performance characteristics of aluminum-nano boron carbide metal matrix nanocomposites. Mater. Manuf. Process. 31(10), 1275–1285 (2016)
64.
Zurück zum Zitat F. Ogawa, C. Masuda, Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition. Mater. Res. Express, 2(1), 015601 (2015) F. Ogawa, C. Masuda, Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition. Mater. Res. Express, 2(1), 015601 (2015)
65.
Zurück zum Zitat L.K. Singh, A. Bhadauria, T. Laha, Comparing the strengthening efficiency of multiwalled carbon nanotubes and graphene nanoplatelets in aluminum matrix. Powder Technol. 356, 1059–1076 (2019) L.K. Singh, A. Bhadauria, T. Laha, Comparing the strengthening efficiency of multiwalled carbon nanotubes and graphene nanoplatelets in aluminum matrix. Powder Technol. 356, 1059–1076 (2019)
66.
Zurück zum Zitat W.W. Zhou, G. Yamamoto, Y. Fan, H. Kwon, T. Hashida, A. Kawasaki, In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106, 37–47 (2016) W.W. Zhou, G. Yamamoto, Y. Fan, H. Kwon, T. Hashida, A. Kawasaki, In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 106, 37–47 (2016)
67.
Zurück zum Zitat X. Zhu, Y.G. Zhao, M. Wu, H.Y. Wang, Q.C. Jiang, Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J. Alloys Compd. 674, 145–152 (2016) X. Zhu, Y.G. Zhao, M. Wu, H.Y. Wang, Q.C. Jiang, Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J. Alloys Compd. 674, 145–152 (2016)
68.
Zurück zum Zitat X.M. Du, K.F. Zheng, F.G. Liu, Microstructure and mechanical properties of graphene-reinfroced aluminum-matrix composites. Mater. Tehnol. 52(6), 763–768 (2018) X.M. Du, K.F. Zheng, F.G. Liu, Microstructure and mechanical properties of graphene-reinfroced aluminum-matrix composites. Mater. Tehnol. 52(6), 763–768 (2018)
69.
Zurück zum Zitat J.S. Zhang, Z.X. Chen, H. Wu, J.W. Zhao, Z.Y. Jiang, Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surf. Coat. Technol. 358, 907–912 (2019) J.S. Zhang, Z.X. Chen, H. Wu, J.W. Zhao, Z.Y. Jiang, Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surf. Coat. Technol. 358, 907–912 (2019)
70.
Zurück zum Zitat M. Maurya, S. Kumar, V. Bajpai, Assessment of the mechanical properties of aluminium metal matrix composite: a review. J. Reinforced Plast. Compos. 38(6), 267–298 (2019) M. Maurya, S. Kumar, V. Bajpai, Assessment of the mechanical properties of aluminium metal matrix composite: a review. J. Reinforced Plast. Compos. 38(6), 267–298 (2019)
71.
Zurück zum Zitat S.K. Thandalam, S. Ramanathan, S. Sundarrajan, Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): a review. J. Mater. Res. Technol. Jmr&T 4(3), 333–347 (2015) S.K. Thandalam, S. Ramanathan, S. Sundarrajan, Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): a review. J. Mater. Res. Technol. Jmr&T 4(3), 333–347 (2015)
72.
Zurück zum Zitat E.M. Sharifi, F. Karimzadeh, Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy. Wear 271(7–8), 1072–1079 (2011) E.M. Sharifi, F. Karimzadeh, Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy. Wear 271(7–8), 1072–1079 (2011)
73.
Zurück zum Zitat S. Arif, T. Alam, A.H. Ansari, M.B.N. Shaikh, Morphological characterization, statistical modelling and tribological behaviour of aluminum hybrid nanocomposites reinforced with micro-nano-silicon carbide. J. Asian Ceram. Soc. 7(4), 434–448 (2019) S. Arif, T. Alam, A.H. Ansari, M.B.N. Shaikh, Morphological characterization, statistical modelling and tribological behaviour of aluminum hybrid nanocomposites reinforced with micro-nano-silicon carbide. J. Asian Ceram. Soc. 7(4), 434–448 (2019)
74.
Zurück zum Zitat M. Ahmadi, M.H. Siadati, Synthesis, mechanical properties and wear behavior of hybrid Al/(TiO2 + CuO) nanocomposites. J. Alloy. Compd. 769, 713–724 (2018) M. Ahmadi, M.H. Siadati, Synthesis, mechanical properties and wear behavior of hybrid Al/(TiO2 + CuO) nanocomposites. J. Alloy. Compd. 769, 713–724 (2018)
75.
Zurück zum Zitat G.L. Fan, R. Xu, Z.Q. Tan, D. Zhang, Z.Q. Li, Development of flake powder metallurgy in fabricating metal matrix composites: a Review. Acta Metall. Sin. Eng. Lett. 27(5), 806–815 (2014) G.L. Fan, R. Xu, Z.Q. Tan, D. Zhang, Z.Q. Li, Development of flake powder metallurgy in fabricating metal matrix composites: a Review. Acta Metall. Sin. Eng. Lett. 27(5), 806–815 (2014)
76.
Zurück zum Zitat G.J. Kipouros, W.F. Caley, D.P. Bishop, On the advantages of using powder metallurgy in new light metal alloy design. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 37A(12), 3429–3436 (2006) G.J. Kipouros, W.F. Caley, D.P. Bishop, On the advantages of using powder metallurgy in new light metal alloy design. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 37A(12), 3429–3436 (2006)
77.
Zurück zum Zitat A.M. Khorasani, M. Goldberg, E.H. Doeven, G. Littlefair, Titanium in biomedical applications-properties and fabrication: a review. J. Biomater. Tissue Eng. 5(8), 593–619 (2015) A.M. Khorasani, M. Goldberg, E.H. Doeven, G. Littlefair, Titanium in biomedical applications-properties and fabrication: a review. J. Biomater. Tissue Eng. 5(8), 593–619 (2015)
78.
Zurück zum Zitat M.F. Ahmadipour, M. Movahedi, A.H. Kokabi, Microstructural evaluation and mechanical properties of Al1050/TiO2-graphite hybrid nanocomposite produced via friction stir processing. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 50A(5), 2443–2461 (2019) M.F. Ahmadipour, M. Movahedi, A.H. Kokabi, Microstructural evaluation and mechanical properties of Al1050/TiO2-graphite hybrid nanocomposite produced via friction stir processing. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 50A(5), 2443–2461 (2019)
79.
Zurück zum Zitat M. Nazari, H. Eskandari, F. Khodabakhshi, Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surf. Coat. Technol. 377, 124914 (2019) M. Nazari, H. Eskandari, F. Khodabakhshi, Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surf. Coat. Technol. 377, 124914 (2019)
80.
Zurück zum Zitat F. Ostovan, S. Amanollah, M. Toozandehjani, E. Shafiei, Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing. J. Compos. Mat. 54(8), 1107–1117 (2020) F. Ostovan, S. Amanollah, M. Toozandehjani, E. Shafiei, Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing. J. Compos. Mat. 54(8), 1107–1117 (2020)
81.
Zurück zum Zitat M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, M. Roknian, Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing. Surf. Coat. Technol. 360, 121–132 (2019) M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, M. Roknian, Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing. Surf. Coat. Technol. 360, 121–132 (2019)
82.
Zurück zum Zitat A. Heidarpour, S. Ahmadifard, S. Kazemi, On the Al5083-Al2O3-TiO2 hybrid surface nanocomposite produced by friction stir processing. Prot. Met. Phys. Chem. Surf. 54(3), 409–415 (2018) A. Heidarpour, S. Ahmadifard, S. Kazemi, On the Al5083-Al2O3-TiO2 hybrid surface nanocomposite produced by friction stir processing. Prot. Met. Phys. Chem. Surf. 54(3), 409–415 (2018)
83.
Zurück zum Zitat S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Mater. Manuf. Process. 33(3), 262–269 (2018) S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Mater. Manuf. Process. 33(3), 262–269 (2018)
84.
Zurück zum Zitat S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing. Crit. Rev. Solid State Mater. Sci. 43(4), 334–366 (2018) S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing. Crit. Rev. Solid State Mater. Sci. 43(4), 334–366 (2018)
85.
Zurück zum Zitat S. Rathee, S. Maheshwari, A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: a review. Mater. Manuf. Process. 33(3), 239–261 (2018) S. Rathee, S. Maheshwari, A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: a review. Mater. Manuf. Process. 33(3), 239–261 (2018)
87.
Zurück zum Zitat A.P. Reddy, P.V. Krishna, R.N. Rao, Two-body abrasive wear behaviour of AA6061-2SiC-2Gr hybrid nanocomposite fabricated through ultrasonically assisted stir casting. J. Compos. Mater. 53(15), 2165–2180 (2019) A.P. Reddy, P.V. Krishna, R.N. Rao, Two-body abrasive wear behaviour of AA6061-2SiC-2Gr hybrid nanocomposite fabricated through ultrasonically assisted stir casting. J. Compos. Mater. 53(15), 2165–2180 (2019)
88.
Zurück zum Zitat R. Harichandran, N. Selvakumar, Microstructure and mechanical characterization of (B4C+ h-BN)/Al hybrid nanocomposites processed by ultrasound assisted casting. Int. J. Mech. Sci. 144, 814–826 (2018) R. Harichandran, N. Selvakumar, Microstructure and mechanical characterization of (B4C+ h-BN)/Al hybrid nanocomposites processed by ultrasound assisted casting. Int. J. Mech. Sci. 144, 814–826 (2018)
89.
Zurück zum Zitat H. Su, W.L. Gao, Z.H. Feng, Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36, 590–596 (2012) H. Su, W.L. Gao, Z.H. Feng, Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36, 590–596 (2012)
90.
Zurück zum Zitat P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain, P. Gupta, Advance research progresses in aluminium matrix composites: manufacturing & applications. J. Mater. Res. Technol. Jmr&T 8(5), 4924–4939 (2019) P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain, P. Gupta, Advance research progresses in aluminium matrix composites: manufacturing & applications. J. Mater. Res. Technol. Jmr&T 8(5), 4924–4939 (2019)
91.
Zurück zum Zitat A. Alizadeh, M. Geraei, M.R. Mahoodi, In situ fabrication of AI-Al2O3-TiB2 hybrid nanocomposite; evaluating the effect of TiO2 and B2O3 mechanical milling time on properties of composite created through vortex casting. Mater. Res. Express 6(4), 045037 (2019) A. Alizadeh, M. Geraei, M.R. Mahoodi, In situ fabrication of AI-Al2O3-TiB2 hybrid nanocomposite; evaluating the effect of TiO2 and B2O3 mechanical milling time on properties of composite created through vortex casting. Mater. Res. Express 6(4), 045037 (2019)
92.
Zurück zum Zitat T.R. Vijayaram, S. Sulaiman, A.M.S. Hamouda, M.H.M. Ahmad, Fabrication of fiber reinforced metal matrix composites by squeeze casting technology. J. Mater. Process. Technol. 178(1–3), 34–38 (2006) T.R. Vijayaram, S. Sulaiman, A.M.S. Hamouda, M.H.M. Ahmad, Fabrication of fiber reinforced metal matrix composites by squeeze casting technology. J. Mater. Process. Technol. 178(1–3), 34–38 (2006)
93.
Zurück zum Zitat C. Kannan, R. Ramanujam, A.S.S. Balan, Machinability studies on Al 7075/BN/Al2O3 squeeze cast hybrid nanocomposite under different machining environments. Mater. Manuf. Process. 33(5), 587–595 (2018) C. Kannan, R. Ramanujam, A.S.S. Balan, Machinability studies on Al 7075/BN/Al2O3 squeeze cast hybrid nanocomposite under different machining environments. Mater. Manuf. Process. 33(5), 587–595 (2018)
94.
Zurück zum Zitat S. Baazamat, M. Tajally, E. Borhani, Fabrication and characteristic of Al-based hybrid nanocomposite reinforced with WO3 and SiC by accumulative roll bonding process. J. Alloys Compd. 653, 39–46 (2015) S. Baazamat, M. Tajally, E. Borhani, Fabrication and characteristic of Al-based hybrid nanocomposite reinforced with WO3 and SiC by accumulative roll bonding process. J. Alloys Compd. 653, 39–46 (2015)
96.
Zurück zum Zitat P. Farhadipour, M. Sedighi, M.H. Vini, Using warm accumulative roll bonding method to produce Al–Al2O3 metal matrix composite. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(5), 889–896 (2017) P. Farhadipour, M. Sedighi, M.H. Vini, Using warm accumulative roll bonding method to produce Al–Al2O3 metal matrix composite. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(5), 889–896 (2017)
97.
Zurück zum Zitat J. Bogucka, Influence of temperature of accumulative roll bonding on the microstructure and mechanical properties of AA5251 aluminum alloy. Arch. Metall. Mater. 59(1), 127–131 (2014) J. Bogucka, Influence of temperature of accumulative roll bonding on the microstructure and mechanical properties of AA5251 aluminum alloy. Arch. Metall. Mater. 59(1), 127–131 (2014)
98.
Zurück zum Zitat S.G. Chen, M.K. Hassanzadeh-Aghdam, R. Ansari, An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J. Alloys Compd. 767, 632–641 (2018) S.G. Chen, M.K. Hassanzadeh-Aghdam, R. Ansari, An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J. Alloys Compd. 767, 632–641 (2018)
99.
Zurück zum Zitat H.H. Kim, J.S.S. Babu, C.G. Kang, Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement. Metallurg. Mater. Trans. Phys. Metall. Mater. Sci. 45A(5), 2636–2645 (2014) H.H. Kim, J.S.S. Babu, C.G. Kang, Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement. Metallurg. Mater. Trans. Phys. Metall. Mater. Sci. 45A(5), 2636–2645 (2014)
100.
Zurück zum Zitat H.S. Vaziri, A. Shokuhfar, Synthesis of nanoalumina/graphene oxide hybrid for improvement tribological property of aluminum. Trans. Indian Inst. Met. 72(7), 1687–1695 (2019) H.S. Vaziri, A. Shokuhfar, Synthesis of nanoalumina/graphene oxide hybrid for improvement tribological property of aluminum. Trans. Indian Inst. Met. 72(7), 1687–1695 (2019)
101.
Zurück zum Zitat M.S. Ahmadvand, A. Azarniya, H.R.M. Hosseini, Thermomechanical synthesis of hybrid in-situ Al-(Al3Ti+Al2O3) composites through nanoscale Al-Al2TiO5 reactive system. J. Alloys Compd. 789, 493–505 (2019) M.S. Ahmadvand, A. Azarniya, H.R.M. Hosseini, Thermomechanical synthesis of hybrid in-situ Al-(Al3Ti+Al2O3) composites through nanoscale Al-Al2TiO5 reactive system. J. Alloys Compd. 789, 493–505 (2019)
102.
Zurück zum Zitat E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Fabrication of aluminum matrix hybrid nanocomposite by mechanical milling. Int. J. Mod. Phys. B 23(23), 4825–4832 (2009) E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Fabrication of aluminum matrix hybrid nanocomposite by mechanical milling. Int. J. Mod. Phys. B 23(23), 4825–4832 (2009)
103.
Zurück zum Zitat M. Shayan, B. Eghbali, B. Niroumand, Synthesis of AA2024-(SiO2np + TiO2np) hybrid nanocomposite via stir casting process. Mater. Sci. Eng. 756, 484–491 (2019) M. Shayan, B. Eghbali, B. Niroumand, Synthesis of AA2024-(SiO2np + TiO2np) hybrid nanocomposite via stir casting process. Mater. Sci. Eng. 756, 484–491 (2019)
104.
Zurück zum Zitat S. Ahmadifard, S. Kazemi, A. Heidarpour, Production and characterization of A5083-Al2O3-TiO2 hybrid surface nanocomposite by friction stir processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 232(4), 287–293 (2018) S. Ahmadifard, S. Kazemi, A. Heidarpour, Production and characterization of A5083-Al2O3-TiO2 hybrid surface nanocomposite by friction stir processing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 232(4), 287–293 (2018)
105.
Zurück zum Zitat X. Zeng, J.G. Yu, D.F. Fu, H. Zhang, J. Teng, Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates. Vacuum 155, 364–375 (2018) X. Zeng, J.G. Yu, D.F. Fu, H. Zhang, J. Teng, Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates. Vacuum 155, 364–375 (2018)
106.
Zurück zum Zitat S. Mosleh-Shirazi, F. Akhlaghi, Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling. Int. J. Mater. Res. 108(1), 60–67 (2017) S. Mosleh-Shirazi, F. Akhlaghi, Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling. Int. J. Mater. Res. 108(1), 60–67 (2017)
107.
Zurück zum Zitat A. H. Adibpour, I. Ebrahimzadeh, and F. Gharavi, Microstructural and tribological properties of A356 based surface hybrid composite produced by friction stir processing. Mat. Res. Express 6(1), 016501 (2019) A. H. Adibpour, I. Ebrahimzadeh, and F. Gharavi, Microstructural and tribological properties of A356 based surface hybrid composite produced by friction stir processing. Mat. Res. Express 6(1), 016501 (2019)
108.
Zurück zum Zitat H. Eskandari, R. Taheri, F. Khodabakhshi, Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 660, 84–96 (2016) H. Eskandari, R. Taheri, F. Khodabakhshi, Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 660, 84–96 (2016)
109.
Zurück zum Zitat A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Effect of In-situ Processing Parameters on the Mechanical and Tribological Properties of Self-Lubricating Hybrid Aluminum Nanocomposites. Tribol. Lett. 62(2), 25 (2016) A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Effect of In-situ Processing Parameters on the Mechanical and Tribological Properties of Self-Lubricating Hybrid Aluminum Nanocomposites. Tribol. Lett. 62(2), 25 (2016)
110.
Zurück zum Zitat A. Schmidt, S. Siebeck, U. Gotze, G. Wagner, D. Nestler, Particle-reinforced aluminum matrix composites (AMCs)-selected results of an integrated technology, user, and market analysis and forecast. Metals 8(2), 143 (2018) A. Schmidt, S. Siebeck, U. Gotze, G. Wagner, D. Nestler, Particle-reinforced aluminum matrix composites (AMCs)-selected results of an integrated technology, user, and market analysis and forecast. Metals 8(2), 143 (2018)
111.
Zurück zum Zitat S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, F.M. Varachia, Aluminum matrix composites for industrial use: advances and trends. Proc. Manuf. 7, 178–182 (2017) S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, F.M. Varachia, Aluminum matrix composites for industrial use: advances and trends. Proc. Manuf. 7, 178–182 (2017)
Metadaten
Titel
Aluminum or Its Alloy Matrix Hybrid Nanocomposites
verfasst von
Subrata Mondal
Publikationsdatum
27.05.2020
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 7/2021
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-020-00750-5

Weitere Artikel der Ausgabe 7/2021

Metals and Materials International 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.