Skip to main content
Erschienen in: Environmental Earth Sciences 6/2017

01.03.2017 | Thematic Issue

Impact of CO2 injection rate on heat extraction at the HDR geothermal field of Zhacanggou, China

verfasst von: Yanguang Liu, Guiling Wang, Gaofan Yue, Chuan Lu, Xi Zhu

Erschienen in: Environmental Earth Sciences | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve the goal of energy exploitation and CO2 geological sequestration. Taking Zhacanggou as research area, a “Three-spot” well pattern (one injection with two production), “wellbore–reservoir” coupled model is built, and a constant injection rate is set up. A fully coupled wellbore–reservoir simulator—T2Well—is introduced to study the flow mechanism of CO2 working as heat transmission fluid, the variance pattern of each physical field, the influence of CO2 injection rate on heat extraction and the potential and sustainability of heat resource in Guide region. The density profile variance resulting from temperature differences of two wells can help the system achieve “self-circulation” by siphon phenomenon, which is more significant in higher injection rate cases. The density of CO2 is under the effect of both pressure and temperature; moreover, it has a counter effect on temperature and pressure. The feedback makes the flow process in wellbore more complex. In low injection rate scenarios, the temperature has a dominating impact on the fluid density, while in high rate scenario, pressure plays a more important role. In most scenarios, it basically keeps stable during 30-year operation. The decline of production temperature is <5 °C. However, for some high injection rate cases (75 and 100 kg/s), due to the heat depletion in reservoir, there is a dramatic decline for production temperature and heat extraction rate. Therefore, a 50-kg/s CO2 injection rate is more suitable for “Three-spot” well pattern in Guide region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557CrossRef Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557CrossRef
Zurück zum Zitat Atrens AD, Gurgenci H, Rudolph V (2010) Electricity generation using a carbon-dioxide thermosiphon. Geothermics 39:161–169CrossRef Atrens AD, Gurgenci H, Rudolph V (2010) Electricity generation using a carbon-dioxide thermosiphon. Geothermics 39:161–169CrossRef
Zurück zum Zitat Beamish D, Busby J (2016) The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements. Geotherm Energy 4:1CrossRef Beamish D, Busby J (2016) The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements. Geotherm Energy 4:1CrossRef
Zurück zum Zitat Breede K, Dzebisashvili K, Liu X, Falcone G (2013) A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm Energy 1:1CrossRef Breede K, Dzebisashvili K, Liu X, Falcone G (2013) A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm Energy 1:1CrossRef
Zurück zum Zitat Brown D (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings, twenty-fifth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA Brown D (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings, twenty-fifth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA
Zurück zum Zitat Gérard A, Genter A, Kohl T, Lutz P, Rose P, Rummel F (2006) The deep EGS (enhanced geothermal system) project at Soultz-sous-Forêts (Alsace, France). Geothermics 35:473–483CrossRef Gérard A, Genter A, Kohl T, Lutz P, Rose P, Rummel F (2006) The deep EGS (enhanced geothermal system) project at Soultz-sous-Forêts (Alsace, France). Geothermics 35:473–483CrossRef
Zurück zum Zitat Jain C, Vogt C, Clauser C (2015) Maximum potential for geothermal power in Germany based on engineered geothermal systems. Geotherm Energy 3:1CrossRef Jain C, Vogt C, Clauser C (2015) Maximum potential for geothermal power in Germany based on engineered geothermal systems. Geotherm Energy 3:1CrossRef
Zurück zum Zitat Kaieda H (2012) Ogachi EGS reservoir analysis. Trans GRC 36:487–492 Kaieda H (2012) Ogachi EGS reservoir analysis. Trans GRC 36:487–492
Zurück zum Zitat Pan L, Oldenburg CM (2014) T2Well—an integrated wellbore–reservoir simulator. Comput Geosci 65:46–55CrossRef Pan L, Oldenburg CM (2014) T2Well—an integrated wellbore–reservoir simulator. Comput Geosci 65:46–55CrossRef
Zurück zum Zitat Pan L, Oldenburg CM, Wu Y-S, Pruess K (2011) T2Well/ECO2N Version 1.0: multiphase and non-isonthermal model for coupled wellbore–reservoir flow of carbon dioxide and variable salinity water, LBNL-4291E. Lawrence Berkeley National Laboratory, BerkeleyCrossRef Pan L, Oldenburg CM, Wu Y-S, Pruess K (2011) T2Well/ECO2N Version 1.0: multiphase and non-isonthermal model for coupled wellbore–reservoir flow of carbon dioxide and variable salinity water, LBNL-4291E. Lawrence Berkeley National Laboratory, BerkeleyCrossRef
Zurück zum Zitat Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367CrossRef Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35:351–367CrossRef
Zurück zum Zitat Pruess K (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manag 49:1446–1454CrossRef Pruess K (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manag 49:1446–1454CrossRef
Zurück zum Zitat Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user’s guide, version 2.0, Report LBNL-43134. Lawrence Berkeley National Laboratory, BerkeleyCrossRef Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 user’s guide, version 2.0, Report LBNL-43134. Lawrence Berkeley National Laboratory, BerkeleyCrossRef
Zurück zum Zitat Randolph JB, Saar MO (2011) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration. Energy Procedia 4:2206–2213CrossRef Randolph JB, Saar MO (2011) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration. Energy Procedia 4:2206–2213CrossRef
Zurück zum Zitat Schill E, Meixner J, Meller C, Grimm M, Grimmer JC, Stober I, Kohl T (2016) Criteria and geological setting for the generic geothermal underground research laboratory, GEOLAB. Geotherm Energy 4:1–30CrossRef Schill E, Meixner J, Meller C, Grimm M, Grimmer JC, Stober I, Kohl T (2016) Criteria and geological setting for the generic geothermal underground research laboratory, GEOLAB. Geotherm Energy 4:1–30CrossRef
Zurück zum Zitat Schintgen T (2015) Exploration for deep geothermal reservoirs in Luxembourg and the surroundings-perspectives of geothermal energy use. Geotherm Energy 3:1CrossRef Schintgen T (2015) Exploration for deep geothermal reservoirs in Luxembourg and the surroundings-perspectives of geothermal energy use. Geotherm Energy 3:1CrossRef
Zurück zum Zitat Shi H, Holmes JA, Durlofsky LJ, Aziz K, Diaz L, Alkaya B, Oddie G (2005) Drift-flux modeling of two-phase flow in wellbores. SPE J 10(01):24–33CrossRef Shi H, Holmes JA, Durlofsky LJ, Aziz K, Diaz L, Alkaya B, Oddie G (2005) Drift-flux modeling of two-phase flow in wellbores. SPE J 10(01):24–33CrossRef
Zurück zum Zitat Vinsome P, Westerveld J (1980) A simple method for predicting cap and base rock heat losses in thermal reservoir simulators. J Can Pet Technol 19:87–90 Vinsome P, Westerveld J (1980) A simple method for predicting cap and base rock heat losses in thermal reservoir simulators. J Can Pet Technol 19:87–90
Zurück zum Zitat Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468CrossRef Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468CrossRef
Metadaten
Titel
Impact of CO2 injection rate on heat extraction at the HDR geothermal field of Zhacanggou, China
verfasst von
Yanguang Liu
Guiling Wang
Gaofan Yue
Chuan Lu
Xi Zhu
Publikationsdatum
01.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 6/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6551-7

Weitere Artikel der Ausgabe 6/2017

Environmental Earth Sciences 6/2017 Zur Ausgabe