Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2021

01.10.2021 | STRENGTH AND PLASTICITY

Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming

verfasst von: A. S. Dolzhenko, P. D. Dolzhenko, A. N. Belyakov, R. O. Kaibyshev

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of temperature and degree of tempforming deformation on the microstructure and impact toughness of high-strength low-alloy 25KhGMT steel have been considered. Tempforming forms a lamellar microstructure composed of grains and subgrains that are strongly elongated along the rolling direction. The average size of the grain section is 570–790 nm. Deformation texture includes 〈001〉 || ND and 〈111〉 || ND fibers. Tempforming increases the fracture work of this steel at lower test temperatures (KV–40°С ≥ 360 J) due to the delamination of the specimen perpendicular to the impact direction, which prevents crack propagation towards the direction of the impact.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Nishioka and K. Ichikawa, “Progress in thermomechanical control of steel plates and their commercialization,” Sci. Technol. Adv. Mater. 13, No. 2, 023001 (2012).CrossRef K. Nishioka and K. Ichikawa, “Progress in thermomechanical control of steel plates and their commercialization,” Sci. Technol. Adv. Mater. 13, No. 2, 023001 (2012).CrossRef
2.
Zurück zum Zitat J. W. Morris, “Stronger, tougher steels,” Science 320, No. 5879, 1022–1023 (2008).CrossRef J. W. Morris, “Stronger, tougher steels,” Science 320, No. 5879, 1022–1023 (2008).CrossRef
3.
Zurück zum Zitat R. Mishnev, N. Dudova, V. Dudko, and R. Kaibyshev, “Impact toughness of a 10% Cr steel with high boron and low nitrogen contents,” Mater. Sci. Eng., A 730, 1–9 (2018).CrossRef R. Mishnev, N. Dudova, V. Dudko, and R. Kaibyshev, “Impact toughness of a 10% Cr steel with high boron and low nitrogen contents,” Mater. Sci. Eng., A 730, 1–9 (2018).CrossRef
4.
Zurück zum Zitat J. Borisova, V. Dudko, R. Mishnev, and R. Kaibyshev, “Effect of laves phase on ductile-brittle transition of 12 Pct Cr steel,” Metall. Mater. Trans. A 50, 3528–3543 (2019).CrossRef J. Borisova, V. Dudko, R. Mishnev, and R. Kaibyshev, “Effect of laves phase on ductile-brittle transition of 12 Pct Cr steel,” Metall. Mater. Trans. A 50, 3528–3543 (2019).CrossRef
5.
Zurück zum Zitat R. Mishnev, N. Dudova, R. Kaibyshev, and A. Belyakov, “On the fracture behavior of a creep resistant 10% Cr steel with high boron and low nitrogen contents at low temperatures,” Materials 13, No. 1, 3 (2020).CrossRef R. Mishnev, N. Dudova, R. Kaibyshev, and A. Belyakov, “On the fracture behavior of a creep resistant 10% Cr steel with high boron and low nitrogen contents at low temperatures,” Materials 13, No. 1, 3 (2020).CrossRef
6.
Zurück zum Zitat R. Chaouadi and A. Fabry, “On the utilization of the instrumented Charpy impact test for characterizing the flow and fracture behavior of reactor pressure vessel steels,” ESIS Publ. 30, 103–117 (2002). R. Chaouadi and A. Fabry, “On the utilization of the instrumented Charpy impact test for characterizing the flow and fracture behavior of reactor pressure vessel steels,” ESIS Publ. 30, 103–117 (2002).
7.
Zurück zum Zitat ASM Handbook: Mechanical Testing and Evaluation (ASM International Materials Park, 2000), Vol. 8, p. 2235. ASM Handbook: Mechanical Testing and Evaluation (ASM International Materials Park, 2000), Vol. 8, p. 2235.
8.
Zurück zum Zitat A. Dolzhenko, R. Kaibyshev, and A. Belyakov, “Tempforming as an advanced processing method for carbon steels,” Metals 10, No. 12, 1566 (2020).CrossRef A. Dolzhenko, R. Kaibyshev, and A. Belyakov, “Tempforming as an advanced processing method for carbon steels,” Metals 10, No. 12, 1566 (2020).CrossRef
9.
Zurück zum Zitat C. M. Yen and C. A. Stickels, “Lamellate fracture in 5150 steel processed by modified ausforming,” Metall. Trans. 1, No. 11, 3037–3047 (1970). C. M. Yen and C. A. Stickels, “Lamellate fracture in 5150 steel processed by modified ausforming,” Metall. Trans. 1, No. 11, 3037–3047 (1970).
10.
Zurück zum Zitat D. W. Kum, T. Oyama, J. Wadsworth, and O. D. Sherby, “The impact properties of laminated composites containing ultrahigh carbon (UHC) steels,” J. Mech. Phys. Solids 31, No. 2, 173–186 (1983).CrossRef D. W. Kum, T. Oyama, J. Wadsworth, and O. D. Sherby, “The impact properties of laminated composites containing ultrahigh carbon (UHC) steels,” J. Mech. Phys. Solids 31, No. 2, 173–186 (1983).CrossRef
11.
Zurück zum Zitat Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, “Inverse temperature dependence of toughness in an ultrafine grain-structure steel,” Science 320, No. 5879, 1057–1060 (2008).CrossRef Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, “Inverse temperature dependence of toughness in an ultrafine grain-structure steel,” Science 320, No. 5879, 1057–1060 (2008).CrossRef
12.
Zurück zum Zitat Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki, “Toughening of a 1500 MPa class steel through formation of an ultrafine fibrous grain structure,” Scr. Mater. 57, No. 6, 465–468 (2007).CrossRef Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki, “Toughening of a 1500 MPa class steel through formation of an ultrafine fibrous grain structure,” Scr. Mater. 57, No. 6, 465–468 (2007).CrossRef
13.
Zurück zum Zitat Y. Kimura and T. Inoue, “Influence of carbon content on toughening in ultrafine elongated grain structure steels,” ISIJ Int. 55, No. 5, 1135–1144 (2015).CrossRef Y. Kimura and T. Inoue, “Influence of carbon content on toughening in ultrafine elongated grain structure steels,” ISIJ Int. 55, No. 5, 1135–1144 (2015).CrossRef
14.
Zurück zum Zitat M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, “Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD,” Mater. Sci. Eng., A 527, 2738–2746 (2010).CrossRef M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, “Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD,” Mater. Sci. Eng., A 527, 2738–2746 (2010).CrossRef
15.
Zurück zum Zitat A. N. Belyakov, “Changes in the grain structure of metallic materials upon plastic treatment,” Phys. Met. Metallogr. 108, No. 4, 390–400 (2009).CrossRef A. N. Belyakov, “Changes in the grain structure of metallic materials upon plastic treatment,” Phys. Met. Metallogr. 108, No. 4, 390–400 (2009).CrossRef
16.
Zurück zum Zitat A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Role of tungsten in the tempered martensite embrittlement of a modified 9 pct Cr steel,” Metall. Mater. Trans. A 48, No. 3, 982–998 (2017).CrossRef A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Role of tungsten in the tempered martensite embrittlement of a modified 9 pct Cr steel,” Metall. Mater. Trans. A 48, No. 3, 982–998 (2017).CrossRef
17.
Zurück zum Zitat Y. Kimura and T. Inoue, “Influence of warm tempforming on microstructure and mechanical properties in an ultrahigh-strength medium-carbon low-alloy steel,” Metall. Mater. Trans. A 44, No. 1, 560–576 (2013).CrossRef Y. Kimura and T. Inoue, “Influence of warm tempforming on microstructure and mechanical properties in an ultrahigh-strength medium-carbon low-alloy steel,” Metall. Mater. Trans. A 44, No. 1, 560–576 (2013).CrossRef
18.
Zurück zum Zitat X. Min, Y. Kimura, T. Kimura, and K. Tsuzaki, “Delamination toughening assisted by phosphorus in medium-carbon low-alloy steels with ultrafine elongated grain structures,” Mater. Sci. Eng., A 649, 135–145 (2016).CrossRef X. Min, Y. Kimura, T. Kimura, and K. Tsuzaki, “Delamination toughening assisted by phosphorus in medium-carbon low-alloy steels with ultrafine elongated grain structures,” Mater. Sci. Eng., A 649, 135–145 (2016).CrossRef
Metadaten
Titel
Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming
verfasst von
A. S. Dolzhenko
P. D. Dolzhenko
A. N. Belyakov
R. O. Kaibyshev
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21100021

Weitere Artikel der Ausgabe 10/2021

Physics of Metals and Metallography 10/2021 Zur Ausgabe