Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2011

Open Access 01.12.2011 | Research

Local stability of the Pexiderized Cauchy and Jensen's equations in fuzzy spaces

verfasst von: Abbas Najati, Jung Im Kang, Yeol Je Cho

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2011

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Lex X be a normed space and Y be a Banach fuzzy space. Let D = {(x, y) ∈ X × X : ||x|| + ||y|| ≥ d} where d > 0. We prove that the Pexiderized Jensen functional equation is stable in the fuzzy norm for functions defined on D and taking values in Y. We consider also the Pexiderized Cauchy functional equation.
2000 Mathematics Subject Classification: 39B22; 39B82; 46S10.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

1. Introduction

The functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to the true solution of (ξ).
The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms:
Let G1 be a group and let G2 be a metric group with the metric d(·,·). Given ε > 0, does there exist δ > 0 such that if a function h : G1G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, yG1, then there exists a homomorphism H : G1G2 with d(h(x), H(x)) < ε for all xG1?
In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism near it. If we turn our attention to the case of functional equations, then we can ask the question: When the solutions of an equation differing slightly from a given one must be close to the true solution of the given equation.
In 1941, Hyers [2] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G1 and G2 are Banach spaces. In 1950, Aoki [3] provided a generalization of the Hyers' theorem for additive mappings, and in 1978, Th.M. Rassias [4] succeeded in extending the result of Hyers for linear mappings by allowing the Cauchy difference to be unbounded (see also [5]). The stability phenomenon that was introduced and proved by Th.M. Rassias is called the generalized Hyers-Ulam stability. Forti [6] and Gǎvruta [7] have generalized the result of Th.M. Rassias, which permitted the Cauchy difference to become arbitrary unbounded. The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem. A large list of references can be found, for example, in [829].
Following [30], we give the following notion of a fuzzy norm.
Definition 1.1. [30] Let X be a real vector space. A function N : X × ℝ → [0, 1] is called a fuzzy norm on X if, for all x, yX and s, t ∈ ℝ,
(N1) N(x, t) = 0 for all t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N ( c x , t ) = N ( x , t | c | ) if c ≠ 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x,·) is a nondecreasing function on ℝ and limt→∞N(x, t) = 1;
(N6) for x ≠ 0, N(x,·) is continuous on ℝ.
The pair (X, N) is called a fuzzy normed vector space.
Example 1.2. Let (X, ||·||) be a normed linear space and let α, β > 0. Then,
N ( x , t ) = α t α t + β x , t > 0 , x X , 0 , t 0 , x X
is a fuzzy norm on X.
Example 1.3. Let (X, ||·||) be a normed linear space and let β > α > 0. Then,
N ( x , t ) = 0 , t α x , t t + ( β - α ) x , α x < t β x ; 1 , t > β x
is a fuzzy norm on X.
Definition 1.4. Let (X, N) be a fuzzy normed space. A sequence {x n } in X is said to be convergent if there exists xX such that limn→∞N(x n - x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence {x n }, and we denote it by N - lim x n = x.
The limit of the convergent sequence {x n } in (X, N) is unique. Since if N - lim x n = x and N-lim x n = y for some x, yX, it follows from (N4) that
N ( x - y , t ) min N x - x n , t 2 , N x n - y , t 2
for all t > 0 and n ∈ ℕ. So, N(x - y, t) = 1 for all t > 0. Hence, (N2) implies that x = y.
Definition 1.5. Let (X, N) be a fuzzy normed space. A sequence {x n } in X is called a Cauchy sequence if, for any ε > 0 and t > 0, there exists M such that, for all nM and p > 0,
N ( x n + p - x n , t ) > 1 - ε .
It follows from (N4) that every convergent sequence in a fuzzy normed space is a Cauchy sequence. If, in a fuzzy normed space, every Cauchy sequence is convergent, then the fuzzy norm is said to be complete, and the fuzzy normed space is called a fuzzy Banach space.
Example 1.6. [21] Let N : ℝ × ℝ → [0, 1] be a fuzzy norm on ℝ defined by
N ( x , t ) = t t + | x | , t > 0 , 0 , t 0 .
Then, (ℝ, N) is a fuzzy Banach space.
Recently, several various fuzzy stability results concerning a Cauchy sequence, Jensen and quadratic functional equations were investigated in [1720].

2. A local Hyers-Ulam stability of Jensen's equation

In 1998, Jung [16] investigated the Hyers-Ulam stability for Jensen's equation on a restricted domain. In this section, we prove a local Hyers-Ulam stability of the Pexiderized Jensen functional equation in fuzzy normed spaces.
Theorem 2.1. Let X be a normed space, (Y, N) be a fuzzy Banach space, and f, g, h : XY be mappings with f(0) = 0. Suppose that δ > 0 is a positive real number, and z0is a fixed vector of a fuzzy normed space (Z, N') such that
N 2 f x + y 2 - g ( x ) - h ( y ) , t + s min { N ( δ z 0 , t ) , N ( δ z 0 , s ) }
(2.1)
for all x, yX with ||x|| + ||y|| ≥ d and positive real numbers t, s. Then, there exists a unique additive mapping T : XY such that
N ( f ( x ) - T ( x ) , t ) N ( 4 0 δ z 0 , t ) ,
(2.2)
N ( T ( x ) - g ( x ) + g ( 0 ) , t ) N ( 3 0 δ z 0 , t ) ,
(2.3)
N ( T ( x ) - h ( x ) + h ( 0 ) , t ) N ( 3 0 δ z 0 , t )
(2.4)
for all xX and t > 0.
Proof. Suppose that ||x|| + ||y|| < d holds. If ||x|| + ||y|| = 0, let zX with ||z|| = d. Otherwise,
z : = ( d + x ) x x , i f x y , ( d + y ) y y , i f x < y .
It is easy to verify that
x - z + y + z d , 2 z + x - z d , y + 2 z d , y + z + z d , x + z d .
(2.5)
It follows from (N4), (2.1) and (2.5) that
N 2 f x + y 2 - g ( x ) - h ( y ) , t + s min N 2 f x + y 2 - g ( y + z ) - h ( x - z ) , t + s 5 , N 2 f x + z 2 - g ( 2 z ) - h ( x - z ) , t + s 5 , N 2 f y + 2 z 2 - g ( 2 z ) - h ( y ) , t + s 5 , N 2 f y + 2 z 2 - g ( y + z ) - h ( z ) , t + s 5 , N 2 f x + z 2 - g ( x ) - h ( z ) , t + s 5 min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) }
for all x, yX with ||x|| + ||y|| < d and positive real numbers t, s. Hence, we have
N 2 f x + y 2 - g ( x ) - h ( y ) , t + s min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) }
(2.6)
for all x, yX and positive real numbers t, s. Letting x = 0 (y = 0) in (2.6), we get
N 2 f y 2 - g ( 0 ) - h ( y ) , t + s min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) } , N 2 f x 2 - g ( x ) - h ( 0 ) , t + s min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) }
(2.7)
for all x, yX and positive real numbers t, s. It follows from (2.6) and (2.7) that
N 2 f x + y 2 - 2 f x 2 - 2 f y 2 , t + s min N 2 f x + y 2 - g ( x ) - h ( y ) , t + s 4 , N 2 f x 2 - g ( x ) - h ( 0 ) , t + s 4 , N 2 f y 2 - g ( 0 ) - h ( y ) , t + s 4 , N ( g ( 0 ) + h ( 0 ) , t + s 4 min { N ( 2 0 δ z 0 , t ) , N ( 2 0 δ z 0 , s ) }
for all x, yX and positive real numbers t, s. Hence,
N f ( x + y ) - f ( x ) - f ( y ) , t + s min { N ( 1 0 δ z 0 , t ) , N ( 1 0 δ z 0 , s ) }
(2.8)
for all x, yX and positive real numbers t, s. Letting y = x and t = s in (2.8), we infer that
N f ( 2 x ) 2 - f ( x ) , t N ( 1 0 δ z 0 , t )
(2.9)
for all xX and positive real number t. replacing x by 2 n x in (2.9), we get
N f ( 2 n + 1 x ) 2 n + 1 - f ( 2 n x ) 2 n , t 2 n N ( 1 0 δ z 0 , t )
(2.10)
for all xX, n ≥ 0 and positive real number t. It follows from (2.10) that
N f ( 2 n x ) 2 n - f ( 2 m x ) 2 m , k = m n - 1 t 2 k min k = m n - 1 N f ( 2 k + 1 x ) 2 k + 1 - f ( 2 k x ) 2 k , t 2 k N ( 1 0 δ z 0 , t )
(2.11)
for all xX, t > 0 and integers nm ≥ 0. For any s, ε > 0, there exist an integer l > 0 and t0 > 0 such that N'(10δz0, t0) > 1 - ε and k = m n - 1 t 0 2 k > s for all nml. Hence, it follows from (2.11) that
N f ( 2 n x ) 2 n - f ( 2 m x ) 2 m , s > 1 - ε
for all nml. So { f ( 2 n x ) 2 n } is a Cauchy sequence in Y for all xX. Since (Y, N) is complete, { f ( 2 n x ) 2 n } converges to a point T(x) ∈ Y. Thus, we can define a mapping T : XY by T ( x ) : = N - lim n f ( 2 n x ) 2 n . Moreover, if we put m = 0 in (2.11), then we observe that
N f ( 2 n x ) 2 n - f ( x ) , k = 0 n - 1 t 2 k N ( 1 0 δ z 0 , t ) .
Therefore, it follows that
N f ( 2 n x ) 2 n - f ( x ) , t N 1 0 δ z 0 , t k = 0 n - 1 2 - k )
(2.12)
for all xX and positive real number t.
Next, we show that T is additive. Let x, yX and t > 0. Then, we have
N T ( x + y ) - T ( x ) - T ( y ) , t min N T ( x + y ) - f ( 2 n ( x + y ) ) 2 n , t 4 , N f ( 2 n x ) 2 n - T ( x ) , t 4 , N f ( 2 n y ) 2 n - T ( y ) , t 4 , N f ( 2 n ( x + y ) ) 2 n - f ( 2 n x ) 2 n - f ( 2 n y ) 2 n , t 4 .
(2.13)
Since, by (2.8),
N f ( 2 n ( x + y ) ) 2 n - f ( 2 n x ) 2 n - f ( 2 n y ) 2 n , t 4 N ( 4 0 δ z 0 , 2 n t ) ,
we get
lim n N f ( 2 n ( x + y ) ) 2 n - f ( 2 n x ) 2 n - f ( 2 n y ) 2 n , t 4 = 1 .
By the definition of T, the first three terms on the right hand side of the inequality (2.13) tend to 1 as n → ∞. Therefore, by tending n → ∞ in (2.13), we observe that T is additive.
Next, we approximate the difference between f and T in a fuzzy sense. For all xX and t > 0, we have
N ( T ( x ) - f ( x ) , t ) min N T ( x ) - f ( 2 n x ) 2 n , t 2 , N f ( 2 n x ) 2 n - f ( x ) , t 2 .
Since T ( x ) : = N - lim n f ( 2 n x ) 2 n , letting n → ∞ in the above inequality and using (N) and (2.12), we get (2.2). It follows from the additivity of T and (2.7) that
N ( T ( x ) - g ( x ) + g ( 0 ) , t ) min N 2 T x 2 - 2 f x 2 , t 3 , N 2 f x 2 - g ( x ) - h ( 0 ) , t 3 , N g ( 0 ) + h ( 0 ) , t 3 N ( 3 0 δ z 0 , t )
for all xX and t > 0. So, we get (2.3). Similarly, we can obtain (2.4).
To prove the uniqueness of T, let S : XY be another additive mapping satisfying the required inequalities. Then, for any xX and t > 0, we have
N ( T ( x ) - S ( x ) , t ) min N T ( x ) - f ( x ) , t 2 , N f ( x ) - S ( x ) , t 2 N ( 8 0 δ z 0 , t ) .
Therefore, by the additivity of T and S, it follows that
N ( T ( x ) - S ( x ) , t ) = N ( T ( n x ) - S ( n x ) , n t ) N ( 8 0 δ z 0 , n t )
for all xX, t > 0 and n ≥ 1. Hence, the right hand side of the above inequality tends to 1 as n → ∞. Therefore, T(x) = S(x) for all xX. This completes the proof.    □
The following is a local Hyers-Ulam stability of the Pexiderized Cauchy functional equation in fuzzy normed spaces.
Theorem 2.2. Let X be a normed space, (Y, N) be a fuzzy Banach space, and f, g, h : XY be mappings with f(0) = 0. Suppose that δ > 0 is a positive real number, and z0is a fixed vector of a fuzzy normed space (Z, N') such that
N ( f ( x + y ) - g ( x ) - h ( y ) , t + s ) min { N ( δ z 0 , t ) , N ( δ z 0 , s ) }
(2.14)
for all x, yX with ||x|| + ||y|| ≥ d and positive real numbers t, s. Then, there exists a unique additive mapping T : XY such that
N ( f ( x ) - T ( x ) , t ) N ( 8 0 δ z 0 , t ) , N ( T ( x ) - g ( x ) + g ( 0 ) , t ) N ( 6 0 δ z 0 , t ) , N ( T ( x ) - h ( x ) + h ( 0 ) , t ) N ( 6 0 δ z 0 , t )
for all xX and t > 0.
Proof. For the case ||x|| + ||y|| < d, let z be an element of X which is defined in the proof of Theorem 2.1. It follows from (N4), (2.5) and (2.14) that
N ( f ( x + y ) - g ( x ) - h ( y ) , t + s ) min N f ( x + y ) - g ( y + z ) - h ( x - z ) , t + s 5 , N f ( x + z ) - g ( 2 z ) - h ( x - z ) , t + s 5 , N f ( y + 2 z ) - g ( 2 z ) - h ( y ) , t + s 5 , N f ( y + 2 z ) - g ( y + z ) - h ( z ) , t + s 5 , N f ( x + z ) - g ( x ) - h ( z ) , t + s 5 min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) }
for all x, yX with ||x|| + ||y|| < d and positive real numbers t, s. Hence, we have
N f ( x + y ) - g ( x ) - h ( y ) , t + s min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) }
(2.15)
for all x, yX and positive real numbers t, s. Letting x = 0 (y = 0) in (2.15), we get
N ( f ( y ) - g ( 0 ) - h ( y ) , t + s ) min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) } , N ( f ( x ) - g ( x ) - h ( 0 ) , t + s ) min { N ( 5 δ z 0 , t ) , N ( 5 δ z 0 , s ) }
(2.16)
for all x, yX and positive real numbers t, s. It follows from (2.15) and (2.16) that
N ( f ( x + y ) - f ( x ) - f ( y ) , t + s ) min N f ( x + y ) - g ( x ) - h ( y ) , t + s 4 , N f ( x ) - g ( x ) - h ( 0 ) , t + s 4 , N f ( y ) - g ( 0 ) - h ( y ) , t + s 4 , N ( g ( 0 ) + h ( 0 ) , t + s 4 ) min { N ( 2 0 δ z 0 , t ) , N ( 2 0 δ z 0 , s ) }
for all x, yX and positive real numbers t, s. The rest of the proof is similar to the proof of Theorem 2.1, and we omit the details.    □

Acknowledgements

This work was supported by the Korea Research Foundation (KRF) grant funded by the Korea government (MEST) (no. 2009-0075850).
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Ulam SM: Problems in Modern Mathematics. Volume chap. VI. Science edition. New York:Wiley; 1964. Ulam SM: Problems in Modern Mathematics. Volume chap. VI. Science edition. New York:Wiley; 1964.
2.
Zurück zum Zitat Hyers DH: On the stability of the linear functional equation. Proc Nat Acad Sci USA 1941, 27: 222–224. 10.1073/pnas.27.4.222MathSciNetCrossRef Hyers DH: On the stability of the linear functional equation. Proc Nat Acad Sci USA 1941, 27: 222–224. 10.1073/pnas.27.4.222MathSciNetCrossRef
3.
Zurück zum Zitat Aoki T: On the stability of the linear transformationin Banach spaces. J Math Soc Japan 1950, 2: 64–66. 10.2969/jmsj/00210064MathSciNetCrossRef Aoki T: On the stability of the linear transformationin Banach spaces. J Math Soc Japan 1950, 2: 64–66. 10.2969/jmsj/00210064MathSciNetCrossRef
4.
Zurück zum Zitat Rassias ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1CrossRef Rassias ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1CrossRef
5.
Zurück zum Zitat Bourgin DG: Classes of transformations and bordering transformations. Bull Am Math Soc 1951, 57: 223–237. 10.1090/S0002-9904-1951-09511-7MathSciNetCrossRef Bourgin DG: Classes of transformations and bordering transformations. Bull Am Math Soc 1951, 57: 223–237. 10.1090/S0002-9904-1951-09511-7MathSciNetCrossRef
6.
Zurück zum Zitat Forti GL: An existence and stability theorem for a class of functional equations. Stochastica 1980, 4: 23–30. 10.1080/17442508008833155MathSciNetCrossRef Forti GL: An existence and stability theorem for a class of functional equations. Stochastica 1980, 4: 23–30. 10.1080/17442508008833155MathSciNetCrossRef
7.
Zurück zum Zitat Gǎvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl 1994, 184: 431–436. 10.1006/jmaa.1994.1211MathSciNetCrossRef Gǎvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl 1994, 184: 431–436. 10.1006/jmaa.1994.1211MathSciNetCrossRef
8.
Zurück zum Zitat Bae J, Jun K, Lee Y: On the Hyers-Ulam-Rassias stability of an n -dimensional Pexiderized quadratic equation. Math Inequal Appl 2004, 7: 63–77.MathSciNet Bae J, Jun K, Lee Y: On the Hyers-Ulam-Rassias stability of an n -dimensional Pexiderized quadratic equation. Math Inequal Appl 2004, 7: 63–77.MathSciNet
9.
Zurück zum Zitat Faizev VA, Rassias ThM, Sahoo PK: The space of ( ψ , φ )-additive mappings on semigroups. Trans Am Math Soc 2002, 354: 4455–4472. 10.1090/S0002-9947-02-03036-2CrossRef Faizev VA, Rassias ThM, Sahoo PK: The space of ( ψ , φ )-additive mappings on semigroups. Trans Am Math Soc 2002, 354: 4455–4472. 10.1090/S0002-9947-02-03036-2CrossRef
10.
Zurück zum Zitat Forti GL: Hyers-Ulam stability of functional equations in several variables. Aequ Math 1995, 50: 143–190. 10.1007/BF01831117MathSciNetCrossRef Forti GL: Hyers-Ulam stability of functional equations in several variables. Aequ Math 1995, 50: 143–190. 10.1007/BF01831117MathSciNetCrossRef
11.
Zurück zum Zitat Forti GL: Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations. J Math Anal Appl 2004, 295: 127–133. 10.1016/j.jmaa.2004.03.011MathSciNetCrossRef Forti GL: Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations. J Math Anal Appl 2004, 295: 127–133. 10.1016/j.jmaa.2004.03.011MathSciNetCrossRef
12.
Zurück zum Zitat Haruki H, Rassias ThM: A new functional equation of Pexider type related to the complex exponential function. Trans Am Math Soc 1995, 347: 3111–3119. 10.2307/2154775MathSciNetCrossRef Haruki H, Rassias ThM: A new functional equation of Pexider type related to the complex exponential function. Trans Am Math Soc 1995, 347: 3111–3119. 10.2307/2154775MathSciNetCrossRef
13.
Zurück zum Zitat Hyers DH, Isac G, Rassias ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel; 1998.CrossRef Hyers DH, Isac G, Rassias ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel; 1998.CrossRef
14.
Zurück zum Zitat Hyers DH, Isac G, Rassias ThM, et al.: On the asymptoticity aspect of Hyers-Ulam stability of mappings. Proc Am Math Soc 1998, 126: 425–430. 10.1090/S0002-9939-98-04060-XMathSciNetCrossRef Hyers DH, Isac G, Rassias ThM, et al.: On the asymptoticity aspect of Hyers-Ulam stability of mappings. Proc Am Math Soc 1998, 126: 425–430. 10.1090/S0002-9939-98-04060-XMathSciNetCrossRef
15.
Zurück zum Zitat Jun K, Lee Y: On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality. Math Inequal Appl 2001, 4: 93–118.MathSciNet Jun K, Lee Y: On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality. Math Inequal Appl 2001, 4: 93–118.MathSciNet
16.
Zurück zum Zitat Jung S-M: Hyers-Ulam-Rassias stability of Jensen's equation and its application. Proc Am Math Soc 1998, 126: 3137–3143. 10.1090/S0002-9939-98-04680-2CrossRef Jung S-M: Hyers-Ulam-Rassias stability of Jensen's equation and its application. Proc Am Math Soc 1998, 126: 3137–3143. 10.1090/S0002-9939-98-04680-2CrossRef
17.
Zurück zum Zitat Miheţ D: The fixed point method for fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2009, 160: 1663–1667. 10.1016/j.fss.2008.06.014CrossRef Miheţ D: The fixed point method for fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2009, 160: 1663–1667. 10.1016/j.fss.2008.06.014CrossRef
18.
Zurück zum Zitat Miheţ D, Radu V: On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal Appl 2008, 343: 567–572.MathSciNetCrossRef Miheţ D, Radu V: On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal Appl 2008, 343: 567–572.MathSciNetCrossRef
19.
Zurück zum Zitat Mirmostafaee M, Mirzavaziri M, Moslehian MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2008, 159: 730–738. 10.1016/j.fss.2007.07.011MathSciNetCrossRef Mirmostafaee M, Mirzavaziri M, Moslehian MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2008, 159: 730–738. 10.1016/j.fss.2007.07.011MathSciNetCrossRef
20.
Zurück zum Zitat Mirmostafee AK, Moslehian MS: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst 2008, 159: 720–729. 10.1016/j.fss.2007.09.016CrossRef Mirmostafee AK, Moslehian MS: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst 2008, 159: 720–729. 10.1016/j.fss.2007.09.016CrossRef
21.
Zurück zum Zitat Najati A: Fuzzy stability of a generalized quadratic functional equation. Commun Korean Math Soc 2010, 25: 405–417. 10.4134/CKMS.2010.25.3.405MathSciNetCrossRef Najati A: Fuzzy stability of a generalized quadratic functional equation. Commun Korean Math Soc 2010, 25: 405–417. 10.4134/CKMS.2010.25.3.405MathSciNetCrossRef
22.
Zurück zum Zitat Najati A, Moghimi MB: Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces. J Math Anal Appl 2008, 337: 399–415. 10.1016/j.jmaa.2007.03.104MathSciNetCrossRef Najati A, Moghimi MB: Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces. J Math Anal Appl 2008, 337: 399–415. 10.1016/j.jmaa.2007.03.104MathSciNetCrossRef
23.
Zurück zum Zitat Najati A, Park C: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation. J Math Anal Appl 2007, 335: 763–778. 10.1016/j.jmaa.2007.02.009MathSciNetCrossRef Najati A, Park C: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation. J Math Anal Appl 2007, 335: 763–778. 10.1016/j.jmaa.2007.02.009MathSciNetCrossRef
24.
Zurück zum Zitat Rassias ThM, Tabor J, (eds.): Stability of Mappings of Hyers-Ulam Type. Hadronic Press Inc. Florida; 1994. Rassias ThM, Tabor J, (eds.): Stability of Mappings of Hyers-Ulam Type. Hadronic Press Inc. Florida; 1994.
25.
Zurück zum Zitat Rassias ThM: On the stability of the quadratic functional equation and its applications. Studia Univ Babes Bolyai Math 1998, 43: 89–124.MathSciNet Rassias ThM: On the stability of the quadratic functional equation and its applications. Studia Univ Babes Bolyai Math 1998, 43: 89–124.MathSciNet
26.
Zurück zum Zitat Rassias ThM: On the stability of functional equations and a problem of Ulam. Acta Appl Math 2000, 62: 23–130. 10.1023/A:1006499223572MathSciNetCrossRef Rassias ThM: On the stability of functional equations and a problem of Ulam. Acta Appl Math 2000, 62: 23–130. 10.1023/A:1006499223572MathSciNetCrossRef
27.
Zurück zum Zitat Rassias ThM, (ed.): Functional Equations and Inequalities. Kluwer Academic Publishers, Dordrecht; 2000. Rassias ThM, (ed.): Functional Equations and Inequalities. Kluwer Academic Publishers, Dordrecht; 2000.
28.
Zurück zum Zitat Rassias ThM: On the stability of functional equations in Banach spaces. J Math Anal Appl 2000, 251: 264–284. 10.1006/jmaa.2000.7046MathSciNetCrossRef Rassias ThM: On the stability of functional equations in Banach spaces. J Math Anal Appl 2000, 251: 264–284. 10.1006/jmaa.2000.7046MathSciNetCrossRef
29.
Zurück zum Zitat Šemrl P: On quadratic functionals. Bull Aust Math Soc 1987, 37: 27–28. Šemrl P: On quadratic functionals. Bull Aust Math Soc 1987, 37: 27–28.
30.
Zurück zum Zitat Bag T, Samanta SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003, 11: 687–705.MathSciNet Bag T, Samanta SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003, 11: 687–705.MathSciNet
Metadaten
Titel
Local stability of the Pexiderized Cauchy and Jensen's equations in fuzzy spaces
verfasst von
Abbas Najati
Jung Im Kang
Yeol Je Cho
Publikationsdatum
01.12.2011
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2011
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2011-78

Weitere Artikel der Ausgabe 1/2011

Journal of Inequalities and Applications 1/2011 Zur Ausgabe