Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2012

Open Access 01.12.2012 | Research

A more accurate half-discrete Hilbert-type inequality with a non-homogeneous kernel

verfasst von: Bicheng Yang, Xindong Liu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2012

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

By means of weight functions and the improved Euler-Maclaurin summation formula, a more accurate half-discrete Hilbert-type inequality with a non-homogeneous kernel and a best constant factor is given. A best extension, some equivalent forms, the operator expressions as well as some particular cases are also considered.
MSC:26D15, 47A07.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the molecular genetic studies participated in the sequence alignment and drafted the manuscript. XL conceived of the study and participated in its design and coordination. All authors read and approved the final manuscript.

1 Introduction

Assuming that f , g L 2 ( R + ) , f = { 0 f 2 ( x ) d x } 1 2 > 0 , g > 0 , we have the following Hilbert’s integral inequality (cf. [1]):
0 0 f ( x ) g ( y ) x + y d x d y < π f g ,
(1)
where the constant factor π is best possible. If a = { a n } n = 1 , b = { b n } n = 1 l 2 , a = { n = 1 a n 2 } 1 2 > 0 , b > 0 , then we have the following analogous discrete Hilbert’s inequality:
m = 1 n = 1 a m b n m + n < π a b ,
(2)
with the same best constant factor π. Inequalities (1) and (2) are important in analysis and its applications (cf. [24]).
In 1998, by introducing an independent parameter λ ( 0 , 1 ] , Yang [5] gave an extension of (1). For generalizing the results from [5], Yang [6] gave some best extensions of (1) and (2) as follows. If p > 1 , 1 p + 1 q = 1 , λ 1 + λ 2 = λ , k λ ( x , y ) is a non-negative homogeneous function of degree −λ satisfying k ( λ 1 ) = 0 k λ ( t , 1 ) t λ 1 1 d t R + , ϕ ( x ) = x p ( 1 λ 1 ) 1 , ψ ( x ) = x q ( 1 λ 2 ) 1 , f ( 0 ) L p , ϕ ( R + ) = { f | f p , ϕ : = { 0 ϕ ( x ) | f ( x ) | p d x } 1 p < } , g ( 0 ) L q , ψ ( R + ) , and f p , ϕ , g q , ψ > 0 , then
0 0 k λ ( x , y ) f ( x ) g ( y ) d x d y < k ( λ 1 ) f p , ϕ g q , ψ ,
(3)
where the constant factor k ( λ 1 ) is best possible. Moreover, if k λ ( x , y ) is finite and k λ ( x , y ) x λ 1 1 ( k λ ( x , y ) y λ 2 1 ) is decreasing for x > 0 ( y > 0 ), then for a m , b n 0 , a = { a m } m = 1 l p , ϕ = { a | a p , ϕ : = { n = 1 ϕ ( n ) | a n | p } 1 p < } , and b = { b n } n = 1 l q , ψ , a p , ϕ , b q , ψ > 0 , we have
m = 1 n = 1 k λ ( m , n ) a m b n < k ( λ 1 ) a p , ϕ b q , ψ ,
(4)
where the constant k ( λ 1 ) is still the best value. Clearly, for p = q = 2 , λ = 1 , k 1 ( x , y ) = 1 x + y , λ 1 = λ 2 = 1 2 , (3) reduces to (1), while (4) reduces to (2).
Some other results about integral and discrete Hilbert-type inequalities can be found in [716]. On half-discrete Hilbert-type inequalities with the general non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors are best possible. In 2005, Yang [17] gave a result with the kernel 1 ( 1 + n x ) λ by introducing a variable and proved that the constant factor is best possible. Very recently, Yang [18] and [19] gave the following half-discrete Hilbert’s inequality with the best constant factor:
0 f ( x ) n = 1 a n ( x + n ) λ d x < π f a ;
(5)
Chen [20] and Yang [21] gave two more accurate half-discrete Mulholland’s inequalities by using Hadamard’s inequality.
In this paper, by means of weight functions and the improved Euler-Maclaurin summation formula, a more accurate half-discrete Hilbert-type inequality with a non-homogeneous kernel and a best constant factor is given as follows. For 0 < α + β 2 , γ R , η 1 α + β 8 ( 1 + 3 + 4 α + β ) ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ6_HTML.gif
(6)
Moreover, a best extension of (6), some equivalent forms, the operator expressions as well as some particular inequalities are considered.

2 Some lemmas

Lemma 1 If n 0 N , s > n 0 , g 1 ( y ) ( y [ n 0 , s ) ), g 2 ( y ) ( y [ s , ) ) are decreasing continuous functions satisfying g 1 ( n 0 ) g 1 ( s 0 ) + g 2 ( s ) > 0 , g 2 ( ) = 0 , define a function g ( y ) as follows:
g ( y ) : = { g 1 ( y ) , y [ n 0 , s ) , g 2 ( y ) , y [ s , ) .
Then there exists ε [ 0 , 1 ] such that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ7_HTML.gif
(7)
where ρ ( y ) = y [ y ] 1 2 is a Bernoulli function of the first order. In particular, for g 1 ( y ) = 0 , y [ n 0 , s ) , we have g 2 ( s ) > 0 and
1 8 g 2 ( s ) < s ρ ( y ) g ( y ) d y < 1 8 g 2 ( s ) ;
(8)
for g 2 ( y ) = 0 , y [ s , ) , if g 1 ( s 0 ) 0 , then it follows g 1 ( n 0 ) > 0 and
1 8 g 1 ( n 0 ) < n 0 s ρ ( y ) g 1 ( y ) d y < 0 .
(9)
Proof Define a decreasing continuous function g ˜ ( y ) as
g ˜ ( y ) : = { g 1 ( y ) + g 2 ( s ) g 1 ( s 0 ) , y [ n 0 , s ) , g 2 ( y ) , y [ s , ) .
Then it follows
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equc_HTML.gif
Since g ˜ ( n 0 ) = g 1 ( n 0 ) + g 2 ( s ) g 1 ( s 0 ) > 0 , g ˜ ( y ) is a non-constant decreasing continuous function with g ˜ ( ) = g 2 ( ) = 0 , by the improved Euler-Maclaurin summation formula (cf. [6], Theorem 2.2.2), it follows
1 8 ( g 1 ( n 0 ) + g 2 ( s ) g 1 ( s 0 ) ) = 1 8 g ˜ ( n 0 ) < n 0 ρ ( y ) g ˜ ( y ) d y < 0 ,
and then in view of the above results and by simple calculation, we have (7). □
Lemma 2 If 0 < α + β 2 , γ R , η 1 α + β 8 ( 1 + 3 + 4 α + β ) , and ω ( n ) and ϖ ( x ) are weight functions given by
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ10_HTML.gif
(10)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ11_HTML.gif
(11)
then we have
ϖ ( x ) < ω ( n ) = 4 α + β .
(12)
Proof Substituting t = ( x γ ) ( n η ) in (10), and by simple calculation, we have
ω ( n ) = 0 ( min { 1 , t } ) β ( max { 1 , t } ) α t α β 2 1 d t = 0 1 t β + α β 2 1 d t + 1 t α + α β 2 1 d t = 4 α + β .
For fixed x > γ , we find
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equf_HTML.gif
By the Euler-Maclaurin summation formula (cf. [6]), it follows
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ13_HTML.gif
(13)
(i)
For 0 < x γ < 1 1 η , we obtain 1 2 h ( x , 1 ) = 1 2 ( x γ ) α + β 2 ( 1 η ) α + β 2 1 , and
η 1 h ( x , y ) d y = ( x γ ) α + β 2 η 1 ( y η ) α + β 2 1 d y = 2 ( 1 η ) α + β 2 α + β ( x γ ) α + β 2 .
 
Setting g ( y ) : = h y ( x , y ) , wherefrom g 1 ( y ) = ( 1 α + β 2 ) ( x γ ) α + β 2 ( y η ) α + β 2 2 , g 2 ( y ) = ( α + β 2 + 1 ) ( x γ ) α + β 2 ( y η ) α + β 2 2 and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equh_HTML.gif
then by (7), we find
1 ρ ( y ) h y ( x , y ) d y = 1 ρ ( y ) g ( y ) d y > 1 8 [ g 1 ( 1 ) + g 2 ( η + 1 x γ ) g 1 ( ( η + 1 x γ ) 0 ) ] = 1 8 [ ( 1 α + β 2 ) ( x γ ) α + β 2 ( 1 η ) α + β 2 2 + ( α + β ) ( x γ ) 2 ] > 1 8 [ ( 1 α + β 2 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 + ( α + β ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 2 ( x γ ) 2 ] = 1 8 [ ( 1 + α + β 2 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 ] .
In view of (11) and the above results, since for η 1 α + β 8 ( 1 + 3 + 4 α + β ) , namely 1 η α + β 8 ( 1 + 3 + 4 α + β ) , it follows
R ( x ) > 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 1 2 ( x γ ) α + β 2 ( 1 η ) α + β 2 1 1 8 ( 1 + α + β 2 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 = [ 2 ( 1 η ) 2 α + β ( 1 η ) 2 2 + α + β 16 ] ( x γ ) α + β 2 ( 1 η ) 2 α + β 2 0 .
(ii)
For x γ 1 1 η , we obtain 1 2 h ( x , 1 ) = 1 2 ( x γ ) α + β 2 ( 1 η ) α + β 2 1 , and
η 1 h ( x , y ) d y = η η + 1 x γ ( x γ ) α + β 2 ( y η ) 1 α + β 2 d y + η + 1 x γ 1 ( x γ ) α + β 2 ( y η ) α + β 2 + 1 d y = 4 α + β 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 4 ( 1 η ) α + β 2 α + β ( x γ ) α + β 2 2 ( 1 η ) α + β 2 α + β ( x γ ) α + β 2 = 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 .
 
Since for y 1 , y η 1 x γ , by the improved Euler-Maclaurin summation formula (cf. [6]), it follows
1 ρ ( y ) h y ( x , y ) d y = ( α + β 2 + 1 ) ( x γ ) α + β 2 1 ρ ( y ) ( y η ) α + β 2 2 d y > 1 12 ( α + β 2 + 1 ) ( x γ ) α + β 2 ( 1 η ) α + β 2 2 .
In view of (13) and the above results, for 1 η α + β 8 ( 1 + 3 + 4 α + β ) , we find
R ( x ) > 2 α + β ( 1 η ) α + β 2 ( x γ ) α + β 2 1 2 ( 1 η ) α + β 2 1 ( x γ ) α + β 2 1 12 ( α + β 2 + 1 ) ( 1 η ) α + β 2 2 ( x γ ) α + β 2 > [ 2 ( 1 η ) 2 α + β 1 η 2 2 + α + β 16 ] ( x γ ) α + β 2 ( 1 η ) 2 + α + β 2 0 .
Hence, for x > γ , we have R ( x ) > 0 , and then (12) follows. □
Lemma 3 Let the assumptions of Lemma 2 be fulfilled and, additionally, let p > 1 , 1 p + 1 q = 1 , a n 0 , n N , f ( x ) be a non-negative measurable function in ( γ , ) . Then we have the following inequalities:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ14_HTML.gif
(14)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ15_HTML.gif
(15)
Proof Setting k ( x , n ) : = ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α , by Hölder’s inequality (cf. [22]) and (12), it follows
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equn_HTML.gif
Then by the Lebesgue term-by-term integration theorem (cf. [23]), we have
J ( 4 α + β ) 1 q { n = 1 γ k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x } 1 p = ( 4 α + β ) 1 q { γ n = 1 k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 f p ( x ) d x } 1 p = ( 4 α + β ) 1 q { γ ϖ ( x ) ( x γ ) p ( 1 α β 2 ) 1 f p ( x ) d x } 1 p .
Hence, (14) follows. By Hölder’s inequality again, we have
[ n = 1 k ( x , n ) a n ] q = { n = 1 k ( x , n ) [ ( x γ ) ( 1 α β 2 ) / q ( n η ) ( 1 α β 2 ) / p ] × [ ( n η ) ( 1 α β 2 ) / p a n ( x γ ) ( 1 α β 2 ) / q ] } q { n = 1 k ( x , n ) ( x γ ) ( 1 α β 2 ) ( p 1 ) ( n η ) 1 α β 2 } q 1 × n = 1 k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q = [ ϖ ( x ) ] q 1 ( x γ ) q ( α β ) 2 1 n = 1 k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q .
By the Lebesgue term-by-term integration theorem, we have
L 1 { γ n = 1 k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q d x } 1 q = { n = 1 γ k ( x , n ) ( n η ) ( 1 α β 2 ) ( q 1 ) ( x γ ) 1 α β 2 a n q d x } 1 q = { n = 1 ω ( n ) ( n η ) q ( 1 α β 2 ) 1 a n q } 1 q ,
and in view of (12), inequality (15) follows. □
Lemma 4 Let the assumptions of Lemma 2 be fulfilled and, additionally, let p > 1 , 1 p + 1 q = 1 , 0 < ε < p 2 ( α + β ) . Setting f ˜ ( x ) = ( x γ ) α β 2 + ε p 1 , x ( γ , γ + 1 ) ; f ˜ ( x ) = 0 , x [ γ + 1 , ) , and a ˜ n = ( n η ) α β 2 ε q 1 , n N , then we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ16_HTML.gif
(16)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ17_HTML.gif
(17)
Proof We find
I ˜ = n = 1 ( n η ) α β 2 ε q 1 × γ γ + 1 ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α ( x γ ) α β 2 + ε p 1 d x = n = 1 ( n η ) α β 2 ε q 1 [ ( n η ) β γ γ + 1 n η ( x γ ) α + β 2 + ε p 1 d x + 1 ( n η ) α γ + 1 n η γ + 1 ( x γ ) α + β 2 + ε p 1 d x ] = α + β ( α + β 2 ) 2 ( ε p ) 2 n = 1 ( n η ) ε 1 1 α + β 2 ε p n = 1 ( n η ) α + β 2 ε q 1 > α + β ( α + β 2 ) 2 ( ε p ) 2 1 d y ( y η ) ε + 1 1 α + β 2 ε p n = 1 ( n η ) α + β 2 ε q 1 = 1 ε [ ( α + β ) ( 1 η ) ε ( α + β 2 ) 2 ( ε p ) 2 ε α + β 2 ε p n = 1 ( n η ) α + β 2 ε q 1 ] ,
and then (16) is valid. We obtain
H ˜ = { γ γ + 1 ( x γ ) ε 1 d x } 1 p { ( 1 η ) ε 1 + n = 2 ( n η ) ε 1 } 1 q < ( 1 ε ) 1 p { ( 1 η ) ε 1 + 1 ( y η ) ε 1 d y } 1 q = 1 ε { ε ( 1 η ) ε 1 + ( 1 η ) ε } 1 q ,
and so (17) is valid. □

3 Main results

We introduce the functions
Φ ( x ) : = ( x γ ) p ( 1 α β 2 ) 1 ( x ( γ , ) ) , Ψ ( n ) : = ( n η ) q ( 1 α β 2 ) 1 ( n N ) ,
wherefrom [ Φ ( x ) ] 1 q = ( x γ ) q α β 2 1 and [ Ψ ( n ) ] 1 p = ( n η ) p α β 2 1 .
Theorem 5 If 0 < α + β 2 , γ R , η 1 α + β 8 ( 1 + 3 + 4 α + β ) , p > 1 , 1 p + 1 q = 1 , f ( x ) , a n 0 , f L p , Φ ( γ , ) , a = { a n } n = 1 l q , Ψ , f p , Φ > 0 and a q , Ψ > 0 , then we have the following equivalent inequalities:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ18_HTML.gif
(18)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ19_HTML.gif
(19)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ20_HTML.gif
(20)
where the constant 4 α + β is the best possible in the above inequalities.
Proof The two expressions for I in (18) follow from the Lebesgue term-by-term integration theorem. By (14) and (12), we have (19). By Hölder’s inequality, we have
I = n = 1 [ Ψ 1 q ( n ) γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) ( max { 1 , ( x γ ) ( n η ) } ) α d x ] [ Ψ 1 q ( n ) a n ] J a q , Ψ .
Then by (19), we have (18). On the other hand, assume that (18) is valid. Setting
a n : = [ Ψ ( n ) ] 1 p [ γ ( min { 1 , ( x γ ) ( n η ) } ) β f ( x ) ( max { 1 , ( x γ ) ( n η ) } ) α d x ] p 1 , n N ,
where J p 1 = a q , Ψ . By (14), we find J < . If J = 0 , then (19) is trivially valid; if J > 0 , then by (18) we have
a q , Ψ q = J q ( p 1 ) = J p = I < 4 α + β f p , Φ a q , Ψ ,
therefore a q , Ψ q 1 = J < 4 α + β f p , Φ ; that is, (19) is equivalent to (18). On the other hand, by (12) we have [ ϖ ( x ) ] 1 q > ( 4 α + β ) 1 q . Then in view of (15), we have (20). By Hölder’s inequality, we find
I = γ [ Φ 1 p ( x ) f ( x ) ] [ Φ 1 p ( x ) n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] d x f p , Φ L .
Then by (20), we have (18). On the other hand, assume that (18) is valid. Setting
f ( x ) : = [ Φ ( x ) ] 1 q [ n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β a n ( max { 1 , ( x γ ) ( n η ) } ) α ] q 1 , x ( γ , ) ,
then L q 1 = f p , Φ . By (15), we find L < . If L = 0 , then (20) is trivially valid; if L > 0 , then by (18), we have
f p , Φ p = L p ( q 1 ) = I < 4 α + β f p , Φ a q , Ψ ,
therefore f p , Φ p 1 = L < 4 α + β a q , Ψ ; that is, (20) is equivalent to (18). Hence, (18), (19) and (20) are equivalent.
If there exists a positive number k ( 4 α + β ) such that (18) is valid as we replace 4 α + β with k, then, in particular, it follows that I ˜ < k H ˜ . In view of (16) and (17), we have
( α + β ) ( 1 η ) ε ( α + β 2 ) 2 ( ε p ) 2 ε O ( 1 ) < k [ ε ( 1 η ) ε 1 + ( 1 η ) ε ] 1 q ,
and 4 α + β k ( ε 0 + ). Hence, k = 4 α + β is the best value of (18).
By the equivalence of the inequalities, the constant factor 4 α + β in (19) and (20) is the best possible. □
Remark 1 (i) Define the first type half-discrete Hilbert-type operator T 1 : L p , Φ ( γ , ) l p , Ψ 1 p as follows. For f L p , Φ ( γ , ) , we define T 1 f l p , Ψ 1 p by
T 1 f ( n ) = γ ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α f ( x ) d x , n N .
Then by (19), T 1 f p , Ψ 1 p 4 α + β f p , Φ and so T 1 is a bounded operator with T 1 4 α + β . Since by Theorem 5 the constant factor in (19) is best possible, we have T 1 = 4 α + β .
(ii)
Define the second type half-discrete Hilbert-type operator T 2 : l q , Ψ L q , Φ 1 q ( γ , ) as follows. For a l q , Ψ , we define T 2 a L q , Φ 1 q ( γ , ) by
T 2 a ( x ) = n = 1 ( min { 1 , ( x γ ) ( n η ) } ) β ( max { 1 , ( x γ ) ( n η ) } ) α a n , x ( γ , ) .
 
Then by (20), T 2 a q , Φ 1 q 4 α + β a q , Ψ and so T 2 is a bounded operator with T 2 4 α + β . Since by Theorem 5 the constant factor in (20) is best possible, we have T 2 = 4 α + β .
Remark 2 (i) For p = q = 2 , (18) reduces to (6). Since we find
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equad_HTML.gif
then for η = γ = 0 in (18), we have the following inequality:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ21_HTML.gif
(21)
Hence, (18) is a more accurate inequality of (21).
(ii)
For β = 0 in (18), we have 0 < α 2 , γ R , η 1 α 8 ( 1 + 3 + 4 α ) , and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ22_HTML.gif
(22)
 
for α = 0 in (18), we have 0 < β 2 , γ R , η 1 β 8 ( 1 + 3 + 4 β ) , and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ23_HTML.gif
(23)
for β = α = λ in (18), we have 0 < λ 1 , γ R , η 1 λ 4 ( 1 + 3 + 2 λ ) , and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2012-292/MediaObjects/13660_2012_Article_426_Equ24_HTML.gif
(24)

Acknowledgements

This work is supported by Guangdong Natural Science Foundation (No. 7004344).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the molecular genetic studies participated in the sequence alignment and drafted the manuscript. XL conceived of the study and participated in its design and coordination. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1934. Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1934.
2.
Zurück zum Zitat Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston; 1991.CrossRef Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston; 1991.CrossRef
3.
Zurück zum Zitat Yang B: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah; 2009. Yang B: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah; 2009.
4.
Zurück zum Zitat Yang B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah; 2011. Yang B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah; 2011.
5.
Zurück zum Zitat Yang B: On Hilbert’s integral inequality. J. Math. Anal. Appl. 1998, 220: 778–785. 10.1006/jmaa.1997.5877MathSciNetCrossRef Yang B: On Hilbert’s integral inequality. J. Math. Anal. Appl. 1998, 220: 778–785. 10.1006/jmaa.1997.5877MathSciNetCrossRef
6.
Zurück zum Zitat Yang B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing; 2009. Yang B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing; 2009.
7.
Zurück zum Zitat Yang B, Brnetić I, Krnić M, Pečarić J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 2005, 8(2):259–272.MathSciNet Yang B, Brnetić I, Krnić M, Pečarić J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 2005, 8(2):259–272.MathSciNet
8.
Zurück zum Zitat Krnić M, Pečarić J: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 2005, 67(3–4):315–331. Krnić M, Pečarić J: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 2005, 67(3–4):315–331.
9.
Zurück zum Zitat Jin J, Debnath L: On a Hilbert-type linear series operator and its applications. J. Math. Anal. Appl. 2010, 371: 691–704. 10.1016/j.jmaa.2010.06.002MathSciNetCrossRef Jin J, Debnath L: On a Hilbert-type linear series operator and its applications. J. Math. Anal. Appl. 2010, 371: 691–704. 10.1016/j.jmaa.2010.06.002MathSciNetCrossRef
10.
Zurück zum Zitat Azar L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2008., 2008: Article ID 546829 Azar L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2008., 2008: Article ID 546829
11.
Zurück zum Zitat Yang B, Rassias T: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 2003, 6(4):625–658.MathSciNet Yang B, Rassias T: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 2003, 6(4):625–658.MathSciNet
12.
Zurück zum Zitat Arpad B, Choonghong O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006., 2006: Article ID 28582 Arpad B, Choonghong O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006., 2006: Article ID 28582
13.
Zurück zum Zitat Kuang J, Debnath L: On Hilbert’s type inequalities on the weighted Orlicz spaces, pacific. J. Appl. Math. 2007, 1(1):95–103.MathSciNet Kuang J, Debnath L: On Hilbert’s type inequalities on the weighted Orlicz spaces, pacific. J. Appl. Math. 2007, 1(1):95–103.MathSciNet
14.
Zurück zum Zitat Zhong W: The Hilbert-type integral inequality with a homogeneous kernel of λ -degree. J. Inequal. Appl. 2008., 2008: Article ID 917392 Zhong W: The Hilbert-type integral inequality with a homogeneous kernel of λ -degree. J. Inequal. Appl. 2008., 2008: Article ID 917392
15.
Zurück zum Zitat Yang B: A new Hilbert-type operator and applications. Publ. Math. (Debr.) 2010, 76(1–2):147–156. Yang B: A new Hilbert-type operator and applications. Publ. Math. (Debr.) 2010, 76(1–2):147–156.
16.
Zurück zum Zitat Li Y, He B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 2007, 76(1):1–13. 10.1017/S0004972700039423CrossRef Li Y, He B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 2007, 76(1):1–13. 10.1017/S0004972700039423CrossRef
17.
Zurück zum Zitat Yang B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 2005, 20(3):319–328.MathSciNet Yang B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 2005, 20(3):319–328.MathSciNet
18.
Zurück zum Zitat Yang B: A half-discrete Hilbert’s inequality. J. Guangdong Educ. Inst. 2011, 31(3):1–7. Yang B: A half-discrete Hilbert’s inequality. J. Guangdong Educ. Inst. 2011, 31(3):1–7.
19.
Zurück zum Zitat Yang B, Chen Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011., 2011: Article ID 124. doi:10.1186/1029–242X-2011–124 Yang B, Chen Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011., 2011: Article ID 124. doi:10.1186/1029–242X-2011–124
20.
Zurück zum Zitat Chen Q, Yang B: On a more accurate half-discrete Mulholland’s inequality and an extension. J. Inequal. Appl. 2012., 2012: Article ID 70. doi:10.1186/1029–242X-2012–70 Chen Q, Yang B: On a more accurate half-discrete Mulholland’s inequality and an extension. J. Inequal. Appl. 2012., 2012: Article ID 70. doi:10.1186/1029–242X-2012–70
21.
Zurück zum Zitat Yang B: A new half-discrete Mulholland-type inequality with parameters. Ann. Funct. Anal. 2012, 3(1):142–150.MathSciNetCrossRef Yang B: A new half-discrete Mulholland-type inequality with parameters. Ann. Funct. Anal. 2012, 3(1):142–150.MathSciNetCrossRef
22.
Zurück zum Zitat Kuang J: Applied Inequalities. Shangdong Science Technic Press, Jinan; 2004. Kuang J: Applied Inequalities. Shangdong Science Technic Press, Jinan; 2004.
23.
Zurück zum Zitat Kuang J: Introduction to Real Analysis. Hunan Education Press, Chansha; 1996. Kuang J: Introduction to Real Analysis. Hunan Education Press, Chansha; 1996.
Metadaten
Titel
A more accurate half-discrete Hilbert-type inequality with a non-homogeneous kernel
verfasst von
Bicheng Yang
Xindong Liu
Publikationsdatum
01.12.2012
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2012
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2012-292

Weitere Artikel der Ausgabe 1/2012

Journal of Inequalities and Applications 1/2012 Zur Ausgabe

Premium Partner