Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2012

Open Access 01.12.2012 | Research

On a Hilbert-type inequality with a homogeneous kernel in ℝ2 and its equivalent form

verfasst von: Bing He

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2012

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

By using the way of weight functions and the technique of real analysis, a new integral inequality with a homogeneous kernel and the best constant factor in ℝ2 is given. The equivalent form and the reverses are considered.
Mathematics Subject Classification (2000): 26D15.
Hinweise

Competing interests

The authors declare that they have no competing interests.

1. Introduction

One hundred years ago, Hilbert proved the following classic inequality [1]
n m a m b n m + n π n α n 2 1 / 2 n b n 2 1 / 2 .
(1.1)
The inequality (1.1) may be classified into several types (discrete and integral etc.), which is of great importance in analysis and its applications [1, 2]. Ever since the advent of inequality (1.1), all kinds of improvements and extensions can be seen in [312]. Note that the kernel of (1.1) is homogeneous of degree -1. In 2009, [13] reviews the negative degree homogeneous kernel of the parameterized Hilbert-type inequalities.
In recent years, many authors have started on Hilbert-type inequality of 0-degree homo-geneous kernel and non-homogeneous kernel. They even established inequalities in ℝ2. In 2008, Yang [14] obtained the improved inequality as follows: If p, r > 1, (1/p) + (1/q) = 1, (1/r) + (1/s) = 1, 0 < λ < 1 and the right-hand side integrals are convergent, then
- - f ( x ) g ( y ) x + y λ d x d y < k λ ( r ) - x p ( 1 - λ r ) f p ( x ) d x 1 / p - x q ( 1 - λ s ) g q ( x ) d x 1 / q ,
(1.2)
where the constant factor k λ ( r ) = B ( λ r , λ s ) + B ( 1 - λ , λ r ) + B ( 1 - λ , λ s ) is the best possible.
Motivated by (1.2) and the technique of real analysis, we establish a new inequality in ℝ2 with a homogeneous kernel of 0-degree. Furthermore, the equivalent form and the corresponding reverse inequalities are also considered.
In what follows, α1, α2 will be real numbers such that 0 < α1 < α2 < π.

2. Lemmas

LEMMA 2.1. If k : = 2  ln ( 4 cos α 1 2 sin α 2 2 ) - α 1 cot  α 1 + ( π - α 2 ) cot  α 2 , the weight function
ϖ ( x ) : = - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 1 y d y , x ( - , ) ,
(2.1)
then for all x ∈ (-∞, 0) ∪ (0, ∞)
ϖ ( x ) = k .
(2.2)
Proof. If x ∈ (-∞,0), then
ϖ ( x ) = - 0 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 1 - y d y + 0 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 1 y d y .
Letting u = y/x for the first integrals and u = -y/x for the second integrals gives
ϖ ( x ) = 0 min i { 1 , 2 } min { 1 , u 2 } u 2 + 2 u  cos  α i + 1 1 u d u + 0 min i { 1 , 2 } min { 1 , u 2 } u 2 - 2 u  cos  α i + 1 1 u d u = 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 1 u - 1 u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u + 1 u - 1 u 2 - 2 u  cos  α 2 + 1 d u . = 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u = 2 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u = 2 ln  2  cos  α 1 2 - α 1 2  cot  α 1 + ln  2 sin α 2 2 - α 2 2  cot  α 2 + π 2  cot  α 2 = 2  ln 4  cos  α 1 2 sin α 2 2 - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 = k .
(2.3)
Similarly, ϖ(x) = k for x ∈ (0, ∞). Hence (2.2) is valid for x ∈ (-∞, 0) ∪ (0, ∞).   □
Note. (i) It is obvious that ϖ(0) = 0. (ii) If α1 = α2 = α, then
min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 = min { x 2 , y 2 } x 2 + 2 x y  cos  α + y 2 ,
and ϖ(x) = 2 ln (2 sin α) + (π - 2α) cot α.
LEMMA 2.2. If p > 1 , 1 p + 1 q = 1 and f(x) is a nonnegative measurable function in (-∞,∞), then for all x ∈ (-∞, 0) ∪ (0, ∞)
J : = - y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p d y k p - x p - 1 f p ( x ) d x .
(2.4)
Proof. By Hölder's inequality with weight [15] and Lemma 2.1, we obtain
- min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p = - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x 1 / q y 1 / p f ( x ) y 1 / p x 1 / q d x p - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y f p ( x ) d x × - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 y q - 1 x d x p - 1 = k p - 1 y - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y f p ( x ) d x .
(2.5)
By Fubini theorem, we find
J k p - 1 - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y f p ( x ) d x d y = k p - 1 - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y d y f p ( x ) d x = k p - x p - 1 f p ( x ) d x .
   □
LEMMA 2.3. If 0 < p < 1 , 1 p + 1 q = 1 and g(x) is a nonnegative measurable function in (-∞,∞), then for all x ∈ (-∞, 0) ∪ (0, ∞)
J k p - x p - 1 f p ( x ) d x ,
(2.6)
L : = - x - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 g ( y ) d y q d x k q - y q - 1 g q ( y ) d y ,
(2.7)
where k = 2 ln ( 4  cos  α 1 2 sin α 2 2 ) - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 .
Proof. It can be completed similarly by following the proof of Lemma 2.2 as long as applying the reverse Hölder's inequality [15], hence we omit the details. Since q < 0, thus (2.7) takes the positive inequality.   □

3. Main results and applications

THEOREM 3.1. If p > 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we obtain the following equivalent inequalities
I : = - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) g ( y ) d x d y < k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.1)
J = - y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p d y < k p - x p - 1 f p ( x ) d x ,
(3.2)
where the constant factors k = 2  ln ( 4  cos  α 1 2 sin α 2 2 ) - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 and k p are both the best possible.
Proof. If (2.5) takes the form of equality for some y ∈ (-∞,0) ∪ (0,∞), then there exist constants A and B such that they are not all zero and
A x p - 1 y f p ( x ) = B y q - 1 x a .e . in( - , ) × ( - , ) .
i.e., A|x| p f p (x) = B|y| q a.e. in (-∞,∞) × (-∞, ∞). We conform that A ≠ 0 (otherwise B = A = 0). Then x p - 1 f p ( x ) = B y q A x a.e. in(-∞,∞), which contradicts the fact that 0 < - x p - 1 f p ( x ) d x < . Hence (2.5) takes a strict inequality and the same as (2.4), thus (3.2) is valid.
By Hölder's inequality with weight [15], we find
I = - y - 1 + ( 1 / q ) - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x y 1 - ( 1 / q ) g ( y ) d y J 1 / p - y q - 1 g q ( y ) d y 1 / q .
(3.3)
By (3.2), we obtain (3.1). On the other hand, suppose that (3.1) is valid. Let
g ( y ) : = y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p - 1 ,
then J = - y q - 1 g q ( y ) d y . In view of (2.4), J < ∞. If J = 0, then (3.2) is naturally valid; if J > 0, by (3.1), then
0 < - y q - 1 g q ( y ) d y = J = I < k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q
(3.4)
J 1 / p = - y q - 1 g q ( y ) d y 1 / p < k - x p - 1 f p ( x ) d x 1 / p .
(3.5)
Hence we obtain (3.2). Thus (3.2) and (3.1) are equivalent.
For any ε > 0, suppose that
f ̃ ( x ) = x - 1 - 2 ε p , x [ 1 , ) , 0 , x ( - 1 , 1 ) , ( - x ) - 1 - 2 ε p , x ( - , - 1 ] , g ̃ ( x ) = x - 1 - 2 ε q , x [ 1 , ) , 0 , x ( - 1 , 1 ) , ( - x ) - 1 - 2 ε q , x ( - , - 1 ] .
Then we get the following inequality
H ( ε ) : = - x p - 1 f ̃ p ( x ) d x 1 p - x q - 1 g ̃ q ( x ) d x 1 q = 1 ε ,
(3.6)
I ( ε ) : = - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ̃ ( x ) g ̃ ( y ) d x d y = I 1 + I 2 + I 3 + I 4 ,
(3.7)
where
I 1 : = - - 1 ( - y ) - 1 - 2 ε q - - 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 ( - x ) - 1 - 2 ε p d x d y , I 2 : = - - 1 ( - y ) - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y , I 3 : = 1 y - 1 - 2 ε q - - 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 ( - x ) - 1 - 2 ε p d x d y , I 4 : = 1 y - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y .
By Fubini theorem [16], it follows
I 1 = I 4 = 1 y - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y = 1 y - 1 - 2 ε 1 y min i { 1 , 2 } min { u 2 , 1 } u 2 + 2 u  cos  α i + 1 u - 1 - 2 ε p d u d y ( u = x / y ) = 1 y - 1 - 2 ε 1 y 1 u 2 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u d y + 1 y - 1 - 2 ε 1 1 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u d y = 0 1 1 u y - 1 - 2 ε d y u 1 - 2 ε p u 2 + 2 u  cos  α 1 + 1 d u + 1 2 ε 1 u - 1 - 2 ε p u 2 + 2 u  cos  α 1 + 1 d u = 1 2 ε 0 1 u 1 + 2 ε q u 2 + 2 u  cos  α 1 + 1 d u + 1 1 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u . I 2 = I 3 = 1 y - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 - 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y = 1 2 ε 0 1 u 1 + 2 ε q u 2 - 2 u  cos  α 2 + 1 d u + 1 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u .
If the constant factor k in (3.1) is not the best possible, then there exists a constant 0 < Mk, such that
I : = - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) g ( y ) d x d y < M - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
In view of (3.6) and (3.7), we obtain
0 1 u 1 + 2 ε q u 2 + 2 u  cos  α 1 + 1 d u + 1 1 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u + 0 1 u 1 + 2 ε q u 2 - 2 u  cos  α 2 + 1 d u + 1 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u = ε I ( ε ) < ε k H ( ε ) = k
(3.8)
By (3.8), (2.3) and Fatou lemma [16], we find
k = 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 1 u - 1 u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u + 1 u - 1 u 2 - 2 u  cos  α 2 + 1 d u = 0 1 lim ε 0 + u 1 + 2 ε q u 2 + 2 u  cos  α i + 1 d u + 1 lim ε 0 + 1 u 2 + 2 u  cos  α i + 1 u - 1 - 2 ε p d u + 0 1 lim ε 0 + u 1 + 2 ε q u 2 - 2 u  cos  α i + 1 d u + 1 lim ε 0 + 1 u 2 - 2 u  cos  α i + 1 u - 1 - 2 ε p d u lim ε 0 + 0 1 u 1 + 2 ε q u 2 + 2 u  cos  α i + 1 d u + 1 1 u 2 + 2 u  cos  α i + 1 u - 1 - 2 ε p d u + 0 1 u 1 + 2 ε q u 2 - 2 u  cos  α i + 1 d u + 1 1 u 2 - 2 u  cos  α i + 1 u - 1 - 2 ε p d u M .
Hence k is the best value of (3.1). We conform that k p is also the best value of (3.2). Otherwise, we can get a contradiction by (3.3) that (3.1) is not the best possible.   □
THEOREM 3.2. If 0 < p < 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we have the following equivalent inequalities
I = - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) g ( y ) d x d y < k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.9)
J = - y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p d y > k p - x p - 1 f p ( x ) d x ,
(3.10)
L : = - x - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 g ( y ) d y q d x < k q - y q - 1 g q ( y ) d y ,
(3.11)
where the constant factors k = 2  ln ( 4  cos  α 1 2 sin α 2 2 ) - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 , both k p and k q are the best possible.
Proof. By Lemma 2.3, similar to the proof of (3.2), we obtain that (3.10) and (3.11) are valid. In view of the reverse equality of (3.3), (3.9) is valid too. On the other hand, suppose that (3.9) is valid, let g(y) defined as Theorem 3.1, it is obvious J > 0. If J = ∞, then (3.10) is valid naturally; if 0 < J < ∞, then by (3.9), we find
- y q - 1 g q ( y ) d y = J = I > k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q , J 1 / p = - y q - 1 g q ( y ) d y 1 / p > k - x p - 1 f p ( x ) d x 1 / p .
(3.12)
Hence we obtain (3.10). Thus (3.10) and (3.9) are equivalent.
(3.11) and (3.9) are equivalent. In fact, we have proved (3.11) is valid above. On the other hand, suppose that (3.11) is valid, by the reverse Hölder's inequality with weight [15], we obtain
I = - ( x 1 - ( 1 / p ) f ( x ) d x ) x - 1 + ( 1 / p ) - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 g ( y ) d y L 1 / q - x p - 1 f p ( x ) d y 1 / p .
(3.13)
By (3.11), we obtain (3.9), and it is equivalent between (3.11) and (3.9). Thus (3.9), (3.10), and (3.11) are equivalent.
k is the best value of (3.9). In fact, If there exists a constant Mk, such that (3.9) is still valid as we replace k by M. By the reverse inequality of (3.8), we obtain
0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u 1 + 2 ε q d u + 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u > k
(3.14)
Suppose that 0 < ε 0 < q 2 such that 2 ε 0 q + 1 > 0 . Letting 0 < εε0 gives u 2 ε q u 2 ε 0 q ( u ( 0 , 1 ] ) and
0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u 1 + 2 ε 0 q d u k 2 0 1 u 2 ε 0 q = k 2 1 1 + ( 2 ε 0 ) / q .
By Lebesgue control convergent theorem [16], it follows
0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u 1 + 2 ε q d u = 0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u d u + o ( 1 ) ( ε 0 + ) .
Then by Levi theorem [16], we obtain
1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u = 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 1 u d u + o ̃ ( 1 ) ( ε 0 + ) .
By (3.14), if follows that kM for ε → 0+. Hence k is the best value of (3.9). Furthermore, the constant factors in (3.10) and (3.11) are both the best value too. Otherwise, by (3.3) or (3.13), we may get a contradiction that the constant factor in (3.9) is not the best possible.   □
By Note (ii), Theorems 3.1 and 3.2, it follows that
COROLLARY 3.3. If p > 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we obtain the following equivalent inequalities
- - min { x 2 , y 2 } x 2 + 2 x y  cos  α + y 2 f ( x ) g ( y ) d x d y < k 1 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.15)
- y - 1 - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 f ( x ) d x p d y < k 1 p - x p - 1 f p ( x ) d x ,
(3.16)
where the constant factors k1 = 2 ln (2 sin α) + (π - 2α) cot α and k 1 p are both the best possible. In particular, for α = π/3 or 2π/3, it reduces to
- - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) g ( y ) d x d y < ln 3 + 3 π 9 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.17)
- y - 1 - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) d x p d y < ln 3 + 3 π 9 p - x p - 1 f p ( x ) d x .
(3.18)
COROLLARY 3.4. If 0 < p < 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we have the following equivalent inequalities
- - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 f ( x ) g ( y ) d x d y > k 1 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.19)
- y - 1 - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 f ( x ) d x p d y > k 1 p - x p - 1 f p ( x ) d x ,
(3.20)
- x - 1 - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 g ( y ) dy q d x < k 1 q - y q - 1 g q ( y ) d y ,
(3.21)
where the constant factors k1 = 2 ln (2 sin α) + (π - 2α) cot α, k 1 p and k 1 q are both the best possible. In particular, for α = π/3 or 2π/3, it reduces to
- - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) g ( y ) d x d y > ln 3 + 3 π 9 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.22)
- y - 1 - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) d x p d y > ln 3 + 3 π 9 p - x p - 1 f p ( x ) d x ,
(3.23)
- x - 1 - min x 2 , y 2 x 2 ± x y + y 2 g ( y ) d y q d x < ln  3 + 3 π 9 q - y q - 1 g q ( y ) d y .
(3.24)

Acknowledgements

The study was partially supported by the Emphases Natural Science Foundation of Guangdong Institution of Higher Learning, College and University (No. 05Z026).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.
Literatur
1.
Zurück zum Zitat Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge, UK; 1934. Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge, UK; 1934.
2.
Zurück zum Zitat Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and their Integrals and Derivatives. Kluwer Academic Publishers, Boston, MA; 1991.CrossRef Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and their Integrals and Derivatives. Kluwer Academic Publishers, Boston, MA; 1991.CrossRef
5.
Zurück zum Zitat Pachpatte BG: On some new inequalities similar to Hilbert's inequality. J Math Anal Appl 1998, 226(3):166–179.MathSciNetCrossRef Pachpatte BG: On some new inequalities similar to Hilbert's inequality. J Math Anal Appl 1998, 226(3):166–179.MathSciNetCrossRef
6.
Zurück zum Zitat Sulaiman WT: Four inequalities similar to Hardy-Hilbert's integral inequality. J In-equal Pure Appl Math 2006, 7(2):8.MathSciNet Sulaiman WT: Four inequalities similar to Hardy-Hilbert's integral inequality. J In-equal Pure Appl Math 2006, 7(2):8.MathSciNet
7.
8.
Zurück zum Zitat He B, Yang B: On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0-Degree and the Hypergeometric Function. Math Practice Theory 2010, 40(18):203–211.MathSciNet He B, Yang B: On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0-Degree and the Hypergeometric Function. Math Practice Theory 2010, 40(18):203–211.MathSciNet
9.
Zurück zum Zitat Brnetić I, Pečarić J: Generalization of Hilbert's integral inequality. Math Inequal Appl 2004, 7(2):199–205.MathSciNet Brnetić I, Pečarić J: Generalization of Hilbert's integral inequality. Math Inequal Appl 2004, 7(2):199–205.MathSciNet
10.
Zurück zum Zitat Li Y, He B: On inequalities of Hilbert's type. Bull Aust Math Soc 2007, 76(1):1–13.CrossRef Li Y, He B: On inequalities of Hilbert's type. Bull Aust Math Soc 2007, 76(1):1–13.CrossRef
11.
Zurück zum Zitat Li Y, Wang Z, He B: Hilbert's Type Linear Operator and Some Extensions of Hilbert's Inequality. J Inequal Appl 2007, 2007: 10. Article ID 82138MathSciNet Li Y, Wang Z, He B: Hilbert's Type Linear Operator and Some Extensions of Hilbert's Inequality. J Inequal Appl 2007, 2007: 10. Article ID 82138MathSciNet
12.
Zurück zum Zitat Zeng Z, Xie Z: On a New Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0 Degree and the Integral in Whole Plane. J Inequal Appl 2010, 2010: 9. Article ID 256796MathSciNet Zeng Z, Xie Z: On a New Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0 Degree and the Integral in Whole Plane. J Inequal Appl 2010, 2010: 9. Article ID 256796MathSciNet
13.
Zurück zum Zitat Yang B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing, China; 2009. Yang B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing, China; 2009.
14.
Zurück zum Zitat Yang B: A new Hilbert-type integral inequality with some parameters. J Jilin Univ 2008, 46(6):1085–1090.MathSciNet Yang B: A new Hilbert-type integral inequality with some parameters. J Jilin Univ 2008, 46(6):1085–1090.MathSciNet
15.
Zurück zum Zitat Kuang J: Applied Inequalities. Shangdong Science Technic Press, Jinan, China; 2004. Kuang J: Applied Inequalities. Shangdong Science Technic Press, Jinan, China; 2004.
16.
Zurück zum Zitat Kuang J: Introduction to Real Analysis. Hunan Education Press, Changsha, China; 1996. Kuang J: Introduction to Real Analysis. Hunan Education Press, Changsha, China; 1996.
Metadaten
Titel
On a Hilbert-type inequality with a homogeneous kernel in ℝ2 and its equivalent form
verfasst von
Bing He
Publikationsdatum
01.12.2012
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2012
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2012-94

Weitere Artikel der Ausgabe 1/2012

Journal of Inequalities and Applications 1/2012 Zur Ausgabe

Premium Partner