Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Lipid Molecular-Ion Interaction Study Based on Nanodisc

verfasst von : Dr. Yunchen Bi

Erschienen in: Study of the Calcium Regulation Mechanism of TCR Activation Using Nanodisc and NMR Technologies

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reconstituting the membrane protein into a suitable model membrane is the first and essential step in studying the membrane protein in vitro. Commonly used membrane mimics include detergent micelles, detergent/lipid bicelles, and lipo somes (reviewed in the previous chapter). A newer model system is the “nanodisc,” originally designed by Dr. Sligar [1]. The nanodisc’s properties as a model membrane are discussed at length in this chapter, but in general its defining qualities are that it is a stable membrane mimic with a precisely controlled size and stoichiometry, making it a suitable system to study membrane proteins in their native environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bayburt TH, Carlson JW, Sligar SG (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123(1):37–44CrossRef Bayburt TH, Carlson JW, Sligar SG (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123(1):37–44CrossRef
2.
Zurück zum Zitat Phillips JC et al (1997) Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J 73(5):2337–2346CrossRef Phillips JC et al (1997) Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J 73(5):2337–2346CrossRef
3.
Zurück zum Zitat Shih AY, Sligar SG, Schulten K (2009) Maturation of high-density lipoproteins. J R Soc Interface 6(39):863–871CrossRef Shih AY, Sligar SG, Schulten K (2009) Maturation of high-density lipoproteins. J R Soc Interface 6(39):863–871CrossRef
4.
Zurück zum Zitat Brouillette CG et al (1984) Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochem 23(2):359–367CrossRef Brouillette CG et al (1984) Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochem 23(2):359–367CrossRef
5.
Zurück zum Zitat Segrest JP (1977) Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem Phys Lipids 18(1):7–22CrossRef Segrest JP (1977) Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem Phys Lipids 18(1):7–22CrossRef
6.
Zurück zum Zitat Brouillette CG et al (2001) Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim Biophys Acta 1531(1–2):4–46CrossRef Brouillette CG et al (2001) Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim Biophys Acta 1531(1–2):4–46CrossRef
7.
Zurück zum Zitat Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochem 46(8):2059–2069CrossRef Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochem 46(8):2059–2069CrossRef
8.
Zurück zum Zitat Koppaka V et al (1999) The structure of human lipoprotein A-I. Evidence for the “belt” model. J Biol Chem 274(21):14541–14544CrossRef Koppaka V et al (1999) The structure of human lipoprotein A-I. Evidence for the “belt” model. J Biol Chem 274(21):14541–14544CrossRef
9.
Zurück zum Zitat Davidson WS, Hilliard GM (2003) The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: a mass specrometry study. J Biol Chem 278(29):27199–27207CrossRef Davidson WS, Hilliard GM (2003) The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: a mass specrometry study. J Biol Chem 278(29):27199–27207CrossRef
10.
Zurück zum Zitat Silva RA et al (2005) A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochem 44(24):8600–8607CrossRef Silva RA et al (2005) A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochem 44(24):8600–8607CrossRef
11.
Zurück zum Zitat Thomas MJ, Bhat S, Sorci-Thomas MG (2006) The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I. Curr Opin Lipidol 17(3):214–220CrossRef Thomas MJ, Bhat S, Sorci-Thomas MG (2006) The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I. Curr Opin Lipidol 17(3):214–220CrossRef
12.
Zurück zum Zitat Bhat S et al (2005) Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J Biol Chem 280(38):33015–33025CrossRef Bhat S et al (2005) Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J Biol Chem 280(38):33015–33025CrossRef
13.
Zurück zum Zitat Gorshkova IN et al (2006) Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation. Biochem 45(4):1242–1254CrossRef Gorshkova IN et al (2006) Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation. Biochem 45(4):1242–1254CrossRef
14.
Zurück zum Zitat Martin DD et al (2006) Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein. J Biol Chem 281(29):20418–20426CrossRef Martin DD et al (2006) Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein. J Biol Chem 281(29):20418–20426CrossRef
15.
Zurück zum Zitat Panagotopulos SE et al (2001) Apolipoprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins. J Biol Chem 276(46):42965–42970CrossRef Panagotopulos SE et al (2001) Apolipoprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins. J Biol Chem 276(46):42965–42970CrossRef
16.
Zurück zum Zitat Li H et al (2000) Structural determination of lipid-bound ApoA-I using fluorescence resonance energy transfer. J Biol Chem 275(47):37048–37054CrossRef Li H et al (2000) Structural determination of lipid-bound ApoA-I using fluorescence resonance energy transfer. J Biol Chem 275(47):37048–37054CrossRef
17.
Zurück zum Zitat Li Y et al (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91(10):3819–3828CrossRef Li Y et al (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91(10):3819–3828CrossRef
18.
Zurück zum Zitat Klon AE et al (2000) Molecular belt models for the apolipoprotein A-I Paris and Milano mutations. Biophys J 79(3):1679–1685CrossRef Klon AE et al (2000) Molecular belt models for the apolipoprotein A-I Paris and Milano mutations. Biophys J 79(3):1679–1685CrossRef
19.
Zurück zum Zitat Segrest JP et al (1999) A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J Biol Chem 274(45):31755–31758CrossRef Segrest JP et al (1999) A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J Biol Chem 274(45):31755–31758CrossRef
20.
Zurück zum Zitat Cheung MC et al (1987) Characterization of high density lipoprotein subspecies: structural studies by single vertical spin ultracentrifugation and immunoaffinity chromatography. J Lipid Res 28(8):913–929 Cheung MC et al (1987) Characterization of high density lipoprotein subspecies: structural studies by single vertical spin ultracentrifugation and immunoaffinity chromatography. J Lipid Res 28(8):913–929
21.
Zurück zum Zitat Borhani DW et al (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 94(23):12291–12296CrossRef Borhani DW et al (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 94(23):12291–12296CrossRef
22.
Zurück zum Zitat Shih AY et al (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 88(1):548–556CrossRef Shih AY et al (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 88(1):548–556CrossRef
23.
Zurück zum Zitat Shih AY et al (2007) Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol 157(3):579–592MathSciNetCrossRef Shih AY et al (2007) Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol 157(3):579–592MathSciNetCrossRef
24.
Zurück zum Zitat Denisov IG et al (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487CrossRef Denisov IG et al (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487CrossRef
25.
Zurück zum Zitat Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430(2):218–228CrossRef Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430(2):218–228CrossRef
26.
Zurück zum Zitat Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12(11):2476–2481CrossRef Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12(11):2476–2481CrossRef
27.
Zurück zum Zitat Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727CrossRef Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727CrossRef
28.
Zurück zum Zitat Civjan NR, et al (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotech 35(3):p 556–60, 562–3 Civjan NR, et al (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotech 35(3):p 556–60, 562–3
29.
Zurück zum Zitat Duan H et al (2004) Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Arch Biochem Biophys 424(2):141–153CrossRef Duan H et al (2004) Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Arch Biochem Biophys 424(2):141–153CrossRef
30.
Zurück zum Zitat Shimizu Y et al (2006) Cell-free translation systems for protein engineering. FEBS J 273(18):4133–4140CrossRef Shimizu Y et al (2006) Cell-free translation systems for protein engineering. FEBS J 273(18):4133–4140CrossRef
31.
Zurück zum Zitat Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156CrossRef Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156CrossRef
32.
Zurück zum Zitat Farrokhi N et al (2009) Heterologous and cell free protein expression systems. Methods Mol Biol 513:175–198CrossRef Farrokhi N et al (2009) Heterologous and cell free protein expression systems. Methods Mol Biol 513:175–198CrossRef
33.
Zurück zum Zitat Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27(8):455–460CrossRef Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27(8):455–460CrossRef
34.
Zurück zum Zitat Luirink J et al (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59:329–355CrossRef Luirink J et al (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59:329–355CrossRef
35.
Zurück zum Zitat Andersson H, von Heijne G (1994) Membrane protein topology: effects of delta mu H+ on the translocation of charged residues explain the ‘positive inside’ rule. EMBO J 13(10):2267–2272 Andersson H, von Heijne G (1994) Membrane protein topology: effects of delta mu H+ on the translocation of charged residues explain the ‘positive inside’ rule. EMBO J 13(10):2267–2272
36.
Zurück zum Zitat Alami M et al (2007) Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26(8):1995–2004CrossRef Alami M et al (2007) Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26(8):1995–2004CrossRef
37.
Zurück zum Zitat Cappuccio JA et al (2008) Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 7(11):2246–2253CrossRef Cappuccio JA et al (2008) Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 7(11):2246–2253CrossRef
38.
Zurück zum Zitat Katzen F et al (2008) Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J Proteome Res 7(8):3535–3542CrossRef Katzen F et al (2008) Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J Proteome Res 7(8):3535–3542CrossRef
39.
Zurück zum Zitat Wang X et al (2015) Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein J 34(3):205–211CrossRef Wang X et al (2015) Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein J 34(3):205–211CrossRef
40.
Zurück zum Zitat Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135(4):702–713CrossRef Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135(4):702–713CrossRef
Metadaten
Titel
Lipid Molecular-Ion Interaction Study Based on Nanodisc
verfasst von
Dr. Yunchen Bi
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54618-5_2

Neuer Inhalt