Skip to main content
Erschienen in: Journal of Coatings Technology and Research 1/2022

06.08.2021

Machine learning workflow for microparticle composite thin-film process–structure linkages

verfasst von: Peter R. Griffiths, Tequila A. L. Harris

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microparticle composite thin films (MCTFs) have applications in a variety of fields, ranging from water filtration, to advanced energy storage, to medical devices. Variations in processing parameters during casting and solidification have been demonstrated to lead to morphological and therefore property changes in the final film. However, the wide range and number of possible combinations of parameters can make robust process–structure (PS) linkages a complex problem. Material informatics has shown to be well suited for developing PS linkages in other materials, but there are challenges that must first be addressed for MCTFs given the lack of separation between the characteristic length scales of the microstructure (i.e., particles, pores, etc.) and the film thickness. The objective of this work is to identify reduced-order spatial models and machine learning algorithms to address these problems. To achieve this, simulated microstructures of microparticle distributions based upon slot die coating simulations have been generated. Reduced-order representations of the microstructures were then created to capture variation in the microstructure across small slices through thickness of the film using two-point particle autocorrelation statistics and principal component analysis. Results showed that predictive PS linkages can be created using Gaussian process regression between the final film morphology and processing parameters; however, image size must be considered to ensure convergence in spatial statistics to increase accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yin, J, Deng, B, “Polymer-Matrix Nanocomposite Membranes for Water Treatment.” J. Membr. Sci., 479 256–275 (2015)CrossRef Yin, J, Deng, B, “Polymer-Matrix Nanocomposite Membranes for Water Treatment.” J. Membr. Sci., 479 256–275 (2015)CrossRef
2.
Zurück zum Zitat Kim, J, Van Der Bruggen, B, “The Use of Nanoparticles in Polymeric and Ceramic Membrane Structures: Review of Manufacturing Procedures and Performance Improvement for Water Treatment.” Environ. Pollut., 158 (7) 2335–2349 (2010)CrossRef Kim, J, Van Der Bruggen, B, “The Use of Nanoparticles in Polymeric and Ceramic Membrane Structures: Review of Manufacturing Procedures and Performance Improvement for Water Treatment.” Environ. Pollut., 158 (7) 2335–2349 (2010)CrossRef
3.
Zurück zum Zitat Chou, W-L, Yu, D-G, Yang, M-C, “The Preparation and Characterization of Silver-Loading Cellulose Acetate Hollow Fiber Membrane for Water Treatment.” Polym. Adv. Technol., 16 (8) 600–607 (2005)CrossRef Chou, W-L, Yu, D-G, Yang, M-C, “The Preparation and Characterization of Silver-Loading Cellulose Acetate Hollow Fiber Membrane for Water Treatment.” Polym. Adv. Technol., 16 (8) 600–607 (2005)CrossRef
4.
Zurück zum Zitat Srivastava, S, Schaefer, JL, Yang, Z, Tu, Z, Archer, LA, “25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage.” Adv. Mater., 26 (2) 201–234 (2014)CrossRef Srivastava, S, Schaefer, JL, Yang, Z, Tu, Z, Archer, LA, “25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage.” Adv. Mater., 26 (2) 201–234 (2014)CrossRef
5.
Zurück zum Zitat Wengeler, L, Schmidt-Hansberg, B, Peters, K, Scharfer, P, Schabel, W, “Investigations on Knife and Slot Die Coating and Processing of Polymer Nanoparticle Films for Hybrid Polymer Solar Cells.” Chem. Eng. Process. Process Intensif., 50 (5–6) 478–482 (2011)CrossRef Wengeler, L, Schmidt-Hansberg, B, Peters, K, Scharfer, P, Schabel, W, “Investigations on Knife and Slot Die Coating and Processing of Polymer Nanoparticle Films for Hybrid Polymer Solar Cells.” Chem. Eng. Process. Process Intensif., 50 (5–6) 478–482 (2011)CrossRef
6.
Zurück zum Zitat Choi, K-J, Lee, J-Y, Shin, D-K, Park, J, “Investigation on Slot-Die Coating of Hybrid Material Structure for OLED Lightings.” J. Phys. Chem. Solids, 95 119–128 (2016)CrossRef Choi, K-J, Lee, J-Y, Shin, D-K, Park, J, “Investigation on Slot-Die Coating of Hybrid Material Structure for OLED Lightings.” J. Phys. Chem. Solids, 95 119–128 (2016)CrossRef
7.
Zurück zum Zitat Lee, S, Koo, J, Kang, SK, Park, G, Lee, YJ, Chen, YY, Lim, SA, Lee, KM, Rogers, JA, “Metal Microparticle - Polymer Composites as Printable, Bio/ecoresorbable Conductive Inks.” Mater. Today, 21 (3) 207–215 (2018)CrossRef Lee, S, Koo, J, Kang, SK, Park, G, Lee, YJ, Chen, YY, Lim, SA, Lee, KM, Rogers, JA, “Metal Microparticle - Polymer Composites as Printable, Bio/ecoresorbable Conductive Inks.” Mater. Today, 21 (3) 207–215 (2018)CrossRef
8.
Zurück zum Zitat Salernitano, E, Migliaresi, C, “Composite Materials for Biomedical Applications: A Review.” J. Appl. Biomater. Biomech., 1 3–18 (2003) Salernitano, E, Migliaresi, C, “Composite Materials for Biomedical Applications: A Review.” J. Appl. Biomater. Biomech., 1 3–18 (2003)
9.
Zurück zum Zitat Chen, L-C, Liu, D, Liu, T-J, Tiu, C, Yang, C-R, Chu, W-B, Wan, C-C, “Improvement of Lithium-Ion Battery Performance Using a Two-Layered Cathode by Simultaneous Slot-Die Coating.” J. Energy Storage, 5 156–162 (2016)CrossRef Chen, L-C, Liu, D, Liu, T-J, Tiu, C, Yang, C-R, Chu, W-B, Wan, C-C, “Improvement of Lithium-Ion Battery Performance Using a Two-Layered Cathode by Simultaneous Slot-Die Coating.” J. Energy Storage, 5 156–162 (2016)CrossRef
10.
Zurück zum Zitat Park, J, Shin, K, Lee, C, “Optimized Design for Anti-reflection Coating Process in Roll-to-Roll Slot-Die Coating System.” Robot. Comput. Integr. Manuf., 30 (5) 432–441 (2014)CrossRef Park, J, Shin, K, Lee, C, “Optimized Design for Anti-reflection Coating Process in Roll-to-Roll Slot-Die Coating System.” Robot. Comput. Integr. Manuf., 30 (5) 432–441 (2014)CrossRef
11.
Zurück zum Zitat Pryamitsyn, V, Ganesan, V, “Origins of Linear Viscoelastic Behavior of Polymer−Nanoparticle Composites.” Macromolecules, 39 (2) 844–856 (2006)CrossRef Pryamitsyn, V, Ganesan, V, “Origins of Linear Viscoelastic Behavior of Polymer−Nanoparticle Composites.” Macromolecules, 39 (2) 844–856 (2006)CrossRef
12.
Zurück zum Zitat Cho, S-D, Lee, J-Y, Paik, K-W, “Effects of Particle Size on Dielectric Constant and Leakage Current of Epoxy/Barium Titanate (BaTiO/sub3/) Composite Films for Embedded Capacitors.” In: Advances in Electronic Materials and Packaging 2001 (Cat. No.01EX506) (2001) Cho, S-D, Lee, J-Y, Paik, K-W, “Effects of Particle Size on Dielectric Constant and Leakage Current of Epoxy/Barium Titanate (BaTiO/sub3/) Composite Films for Embedded Capacitors.” In: Advances in Electronic Materials and Packaging 2001 (Cat. No.01EX506) (2001)
13.
Zurück zum Zitat Jancar, J, Douglas, JF, Starr, FW, Kumar, SK, Cassagnau, P, Lesser, AJ, Sternstein, SS, Buehler, MJ, “Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites.” Polymer, 51 (15) 3321–3343 (2010)CrossRef Jancar, J, Douglas, JF, Starr, FW, Kumar, SK, Cassagnau, P, Lesser, AJ, Sternstein, SS, Buehler, MJ, “Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites.” Polymer, 51 (15) 3321–3343 (2010)CrossRef
14.
Zurück zum Zitat Cardinal, CM, Jung, YD, Ahn, KH, Francis, LF, “Drying Regime Maps for Particulate Coatings.” AIChE J., 56 (11) 2769–2780 (2010)CrossRef Cardinal, CM, Jung, YD, Ahn, KH, Francis, LF, “Drying Regime Maps for Particulate Coatings.” AIChE J., 56 (11) 2769–2780 (2010)CrossRef
15.
Zurück zum Zitat Akbarzadeh, V, Hrymak, AN, “Coupled Fluid-Particle Modeling of a Slot Die Coating System.” AIChE J., 62 (6) 1933–1939 (2016)CrossRef Akbarzadeh, V, Hrymak, AN, “Coupled Fluid-Particle Modeling of a Slot Die Coating System.” AIChE J., 62 (6) 1933–1939 (2016)CrossRef
16.
Zurück zum Zitat Dzinun, H, Othman, MHD, Ismail, AF, Puteh, MH, Rahman, MA, Jaafar, J, “Morphological Study of Co-Extruded Dual-Layer Hollow Fiber Membranes Incorporated with Different TiO2 Loadings.” J. Membr. Sci., 479 123–131 (2015)CrossRef Dzinun, H, Othman, MHD, Ismail, AF, Puteh, MH, Rahman, MA, Jaafar, J, “Morphological Study of Co-Extruded Dual-Layer Hollow Fiber Membranes Incorporated with Different TiO2 Loadings.” J. Membr. Sci., 479 123–131 (2015)CrossRef
17.
Zurück zum Zitat Guillen, GR, Pan, Y, Li, M, Hoek, EMV, “Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review.” Ind. Eng. Chem. Res., 50 (7) 3798–3817 (2011)CrossRef Guillen, GR, Pan, Y, Li, M, Hoek, EMV, “Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review.” Ind. Eng. Chem. Res., 50 (7) 3798–3817 (2011)CrossRef
18.
Zurück zum Zitat Baesch, S, Price, K, Scharfer, P, Francis, L, Schabel, W, “Influence of the Drying Conditions on the Particle Distribution in Particle Filled Polymer Films: Experimental Validation of Predictive Drying Regime Maps.” Chem. Eng. Process. Process Intensif., 123 138–147 (2018)CrossRef Baesch, S, Price, K, Scharfer, P, Francis, L, Schabel, W, “Influence of the Drying Conditions on the Particle Distribution in Particle Filled Polymer Films: Experimental Validation of Predictive Drying Regime Maps.” Chem. Eng. Process. Process Intensif., 123 138–147 (2018)CrossRef
19.
Zurück zum Zitat Chu, W-B, Yang, J-W, Wang, Y-C, Liu, T-J, Tiu, C, Guo, J, “The Effect of Inorganic Particles on Slot Die Coating of Poly(vinyl alcohol) Solutions.” J. Colloid Interface Sci., 297 (1) 215–225 (2006)CrossRef Chu, W-B, Yang, J-W, Wang, Y-C, Liu, T-J, Tiu, C, Guo, J, “The Effect of Inorganic Particles on Slot Die Coating of Poly(vinyl alcohol) Solutions.” J. Colloid Interface Sci., 297 (1) 215–225 (2006)CrossRef
20.
Zurück zum Zitat Campana, DM, Valdez Silva, LD, Carvalho, MS, “Slot Coating Flows of Non-colloidal Particle Suspensions.” AIChE J., 63 (3) 1122–1131 (2017)CrossRef Campana, DM, Valdez Silva, LD, Carvalho, MS, “Slot Coating Flows of Non-colloidal Particle Suspensions.” AIChE J., 63 (3) 1122–1131 (2017)CrossRef
21.
Zurück zum Zitat Rebouças, RB, Siqueira, IR, Carvalho, MS, “Slot Coating Flow of Particle Suspensions: Particle Migration in Shear Sensitive Liquids.” J. Non-Newton. Fluid Mech., 258 22–31 (2018)CrossRef Rebouças, RB, Siqueira, IR, Carvalho, MS, “Slot Coating Flow of Particle Suspensions: Particle Migration in Shear Sensitive Liquids.” J. Non-Newton. Fluid Mech., 258 22–31 (2018)CrossRef
22.
Zurück zum Zitat Siqueira, IR, Carvalho, MS, “A Computational Study of the Effect of Particle Migration on the Low-Flow Limit in Slot Coating of Particle Suspensions.” J. Coat. Technol. Res., 16 1619–1628 (2019)CrossRef Siqueira, IR, Carvalho, MS, “A Computational Study of the Effect of Particle Migration on the Low-Flow Limit in Slot Coating of Particle Suspensions.” J. Coat. Technol. Res., 16 1619–1628 (2019)CrossRef
23.
Zurück zum Zitat Siqueira, IR, Rebouças, RB, Carvalho, MS, “Particle Migration and Alignment in Slot Coating Flows of Elongated Particle Suspensions.” AIChE J., 63 (7) 3187–3198 (2017)CrossRef Siqueira, IR, Rebouças, RB, Carvalho, MS, “Particle Migration and Alignment in Slot Coating Flows of Elongated Particle Suspensions.” AIChE J., 63 (7) 3187–3198 (2017)CrossRef
24.
Zurück zum Zitat Agrawal, A, Choudhary, A, “Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in Materials Science.” APL Mater., 4 (5) 053208 (2016)CrossRef Agrawal, A, Choudhary, A, “Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in Materials Science.” APL Mater., 4 (5) 053208 (2016)CrossRef
25.
Zurück zum Zitat Hill, J, Mulholland, G, Persson, K, Seshadri, R, Wolverton, C, Meredig, B, “Materials Science with Large-Scale Data and Informatics: Unlocking New Opportunities.” MRS Bull., 41 (5) 399–409 (2016)CrossRef Hill, J, Mulholland, G, Persson, K, Seshadri, R, Wolverton, C, Meredig, B, “Materials Science with Large-Scale Data and Informatics: Unlocking New Opportunities.” MRS Bull., 41 (5) 399–409 (2016)CrossRef
26.
Zurück zum Zitat Jain, A, Hautier, G, Ong, SP, Persson, K, “New Opportunities for Materials Informatics: Resources and Data Mining Techniques for Uncovering Hidden Relationships.” J. Mater. Res., 31 (8) 977–994 (2016)CrossRef Jain, A, Hautier, G, Ong, SP, Persson, K, “New Opportunities for Materials Informatics: Resources and Data Mining Techniques for Uncovering Hidden Relationships.” J. Mater. Res., 31 (8) 977–994 (2016)CrossRef
27.
Zurück zum Zitat Jose, R, Ramakrishna, S, “Materials 4.0: Materials Big Data Enabled Materials Discovery.” Appl. Mater. Today, 10 127–132 (2018)CrossRef Jose, R, Ramakrishna, S, “Materials 4.0: Materials Big Data Enabled Materials Discovery.” Appl. Mater. Today, 10 127–132 (2018)CrossRef
28.
Zurück zum Zitat Rajan, K, “Materials Informatics: The Materials “Gene” and Big Data.” Annu. Rev. Mater. Res., 45 (1) 153–169 (2015)CrossRef Rajan, K, “Materials Informatics: The Materials “Gene” and Big Data.” Annu. Rev. Mater. Res., 45 (1) 153–169 (2015)CrossRef
29.
Zurück zum Zitat Ferguson, AL, “Machine Learning and Data Science in Soft Materials Engineering.” J. Phys. Condens. Matter, 30 (4) 043002 (2018)CrossRef Ferguson, AL, “Machine Learning and Data Science in Soft Materials Engineering.” J. Phys. Condens. Matter, 30 (4) 043002 (2018)CrossRef
30.
Zurück zum Zitat Ramprasad, R, Batra, R, Pilania, G, Mannodi-Kanakkithodi, A, Kim, C, “Machine Learning in Materials Informatics: Recent Applications and Prospects.” NPJ Comput. Mater., 3 (1) 54 (2017)CrossRef Ramprasad, R, Batra, R, Pilania, G, Mannodi-Kanakkithodi, A, Kim, C, “Machine Learning in Materials Informatics: Recent Applications and Prospects.” NPJ Comput. Mater., 3 (1) 54 (2017)CrossRef
31.
Zurück zum Zitat Lookman, T, Balachandran, PV, Xue, D, Hogden, J, Theiler, J, “Statistical Inference and Adaptive Design for Materials Discovery.” Curr. Opin. Solid State Mater. Sci., 21 (3) 121–128 (2017)CrossRef Lookman, T, Balachandran, PV, Xue, D, Hogden, J, Theiler, J, “Statistical Inference and Adaptive Design for Materials Discovery.” Curr. Opin. Solid State Mater. Sci., 21 (3) 121–128 (2017)CrossRef
32.
Zurück zum Zitat Sun, Y, Voorhees, PW, Shahani, A, Cecen, A, Gibbs, JW, Kalidindi, SR, Xiao, X, “Solidification in 4D: From Dendrites to Eutectics.” Microsc. Microanal., 23 (11) 320–321 (2017)CrossRef Sun, Y, Voorhees, PW, Shahani, A, Cecen, A, Gibbs, JW, Kalidindi, SR, Xiao, X, “Solidification in 4D: From Dendrites to Eutectics.” Microsc. Microanal., 23 (11) 320–321 (2017)CrossRef
33.
Zurück zum Zitat Moot, T, Isayev, O, Call, RW, Mccullough, SM, Zemaitis, M, Lopez, R, Cahoon, JF, Tropsha, A, “Material Informatics Driven Design and Experimental Validation of Lead Titanate as an Aqueous Solar Photocathode.” Mater. Discov., 6 9–16 (2016)CrossRef Moot, T, Isayev, O, Call, RW, Mccullough, SM, Zemaitis, M, Lopez, R, Cahoon, JF, Tropsha, A, “Material Informatics Driven Design and Experimental Validation of Lead Titanate as an Aqueous Solar Photocathode.” Mater. Discov., 6 9–16 (2016)CrossRef
34.
Zurück zum Zitat Gupta, A, Cecen, A, Goyal, S, Singh, AK, Kalidindi, SR, “Structure–Property Linkages Using a Data Science Approach: Application to a Non-metallic Inclusion/Steel Composite System.” Acta Mater., 91 239–254 (2015)CrossRef Gupta, A, Cecen, A, Goyal, S, Singh, AK, Kalidindi, SR, “Structure–Property Linkages Using a Data Science Approach: Application to a Non-metallic Inclusion/Steel Composite System.” Acta Mater., 91 239–254 (2015)CrossRef
35.
Zurück zum Zitat Wargo, EA, Hanna, AC, Çeçen, A, Kalidindi, SR, Kumbur, EC, “Selection of Representative Volume Elements for Pore-Scale Analysis of Transport in Fuel Cell Materials.” J. Power Sources, 197 168–179 (2012)CrossRef Wargo, EA, Hanna, AC, Çeçen, A, Kalidindi, SR, Kumbur, EC, “Selection of Representative Volume Elements for Pore-Scale Analysis of Transport in Fuel Cell Materials.” J. Power Sources, 197 168–179 (2012)CrossRef
36.
Zurück zum Zitat Altschuh, P, Yabansu, YC, Hötzer, J, Selzer, M, Nestler, B, Kalidindi, SR, “Data Science Approaches for Microstructure Quantification and Feature Identification in Porous Membranes.” J. Membr. Sci., 540 88–97 (2017)CrossRef Altschuh, P, Yabansu, YC, Hötzer, J, Selzer, M, Nestler, B, Kalidindi, SR, “Data Science Approaches for Microstructure Quantification and Feature Identification in Porous Membranes.” J. Membr. Sci., 540 88–97 (2017)CrossRef
37.
Zurück zum Zitat Fullwood, DT, Niezgoda, SR, Adams, BL, Kalidindi, SR, “Microstructure Sensitive Design for Performance Optimization.” Prog. Mater. Sci., 55 (6) 477–562 (2010)CrossRef Fullwood, DT, Niezgoda, SR, Adams, BL, Kalidindi, SR, “Microstructure Sensitive Design for Performance Optimization.” Prog. Mater. Sci., 55 (6) 477–562 (2010)CrossRef
38.
Zurück zum Zitat Mcdowell, DL, Choi, HJ, Panchal, J, Austin, R, Allen, J, Mistree, F, “Plasticity-Related Microstructure-Property Relations for Materials Design.” Key Eng. Mater., 340–341 21–30 (2007)CrossRef Mcdowell, DL, Choi, HJ, Panchal, J, Austin, R, Allen, J, Mistree, F, “Plasticity-Related Microstructure-Property Relations for Materials Design.” Key Eng. Mater., 340–341 21–30 (2007)CrossRef
39.
Zurück zum Zitat Steinberger, D, Gatti, R, Sandfeld, S, “A Universal Approach Towards Computational Characterization of Dislocation Microstructure.” JOM, 68 (8) 2065–2072 (2016)CrossRef Steinberger, D, Gatti, R, Sandfeld, S, “A Universal Approach Towards Computational Characterization of Dislocation Microstructure.” JOM, 68 (8) 2065–2072 (2016)CrossRef
40.
Zurück zum Zitat Kaspi, O, Yosipof, A, Senderowitz, H, “RANdom SAmple Consensus (RANSAC) Algorithm for Material-Informatics: Application to Photovoltaic Solar Cells.” J. Cheminform., 9 (1) 1–15 (2017)CrossRef Kaspi, O, Yosipof, A, Senderowitz, H, “RANdom SAmple Consensus (RANSAC) Algorithm for Material-Informatics: Application to Photovoltaic Solar Cells.” J. Cheminform., 9 (1) 1–15 (2017)CrossRef
41.
Zurück zum Zitat Brough, DB, Wheeler, D, Warren, JA, Kalidindi, SR, “Microstructure-Based Knowledge Systems for Capturing Process-Structure Evolution Linkages.” Curr. Opin. Solid State Mater. Sci., 21 (3) 129–140 (2017)CrossRef Brough, DB, Wheeler, D, Warren, JA, Kalidindi, SR, “Microstructure-Based Knowledge Systems for Capturing Process-Structure Evolution Linkages.” Curr. Opin. Solid State Mater. Sci., 21 (3) 129–140 (2017)CrossRef
42.
Zurück zum Zitat Cecen, A, Fast, T, Kalidindi, SR, “Versatile Algorithms for the Computation of 2-Point Spatial Correlations in Quantifying Material Structure.” Integr. Mater. Manuf. Innov., 5 1–15 (2016)CrossRef Cecen, A, Fast, T, Kalidindi, SR, “Versatile Algorithms for the Computation of 2-Point Spatial Correlations in Quantifying Material Structure.” Integr. Mater. Manuf. Innov., 5 1–15 (2016)CrossRef
43.
Zurück zum Zitat Latypov, MI, Kühbach, M, Beyerlein, IJ, Stinville, J-C, Toth, LS, Pollock, TM, Kalidindi, SR, “Application of Chord Length Distributions and Principal Component Analysis for Quantification and Representation of Diverse Polycrystalline Microstructures.” Mater. Charact., 145 671–685 (2018)CrossRef Latypov, MI, Kühbach, M, Beyerlein, IJ, Stinville, J-C, Toth, LS, Pollock, TM, Kalidindi, SR, “Application of Chord Length Distributions and Principal Component Analysis for Quantification and Representation of Diverse Polycrystalline Microstructures.” Mater. Charact., 145 671–685 (2018)CrossRef
44.
Zurück zum Zitat Yang, Z, Yabansu, YC, Al-Bahrani, R, Liao, W-K, Choudhary, AN, Kalidindi, SR, Agrawal, A, “Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites from Simulation Datasets.” Comput. Mater. Sci., 151 278–287 (2018)CrossRef Yang, Z, Yabansu, YC, Al-Bahrani, R, Liao, W-K, Choudhary, AN, Kalidindi, SR, Agrawal, A, “Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites from Simulation Datasets.” Comput. Mater. Sci., 151 278–287 (2018)CrossRef
45.
Zurück zum Zitat Torquato, S, Haslach, H, Jr, “Random Heterogeneous Materials: Microstructure and Macroscopic Properties.” Appl. Mech. Rev., 55 (4) B62–B63 (2002)CrossRef Torquato, S, Haslach, H, Jr, “Random Heterogeneous Materials: Microstructure and Macroscopic Properties.” Appl. Mech. Rev., 55 (4) B62–B63 (2002)CrossRef
46.
Zurück zum Zitat Jung, J, Yoon, JI, Park, HK, Kim, JY, Kim, HS, “An Efficient Machine Learning Approach to Establish Structure-Property Linkages.” Comput. Mater. Sci., 156 17–25 (2019)CrossRef Jung, J, Yoon, JI, Park, HK, Kim, JY, Kim, HS, “An Efficient Machine Learning Approach to Establish Structure-Property Linkages.” Comput. Mater. Sci., 156 17–25 (2019)CrossRef
47.
Zurück zum Zitat Rasmussen, CE, Williams, CKI, Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006) Rasmussen, CE, Williams, CKI, Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
48.
Zurück zum Zitat Simmons, JP, Bouman, CA, De Graef, M, Drummy, LF, Jr, Drummy, LF, Statistical Methods for Materials Science: The Data Science of Microstructure Characterization. Taylor & Francis Group, Milton (2019)CrossRef Simmons, JP, Bouman, CA, De Graef, M, Drummy, LF, Jr, Drummy, LF, Statistical Methods for Materials Science: The Data Science of Microstructure Characterization. Taylor & Francis Group, Milton (2019)CrossRef
Metadaten
Titel
Machine learning workflow for microparticle composite thin-film process–structure linkages
verfasst von
Peter R. Griffiths
Tequila A. L. Harris
Publikationsdatum
06.08.2021
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 1/2022
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-021-00512-x

Weitere Artikel der Ausgabe 1/2022

Journal of Coatings Technology and Research 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.