Skip to main content

2011 | OriginalPaper | Buchkapitel

12. Magnetic Mineralogy of a Complete Oceanic Crustal Section (IODP Hole 1256D)

verfasst von : David Krása, Emilio Herrero-Bervera, Gary Acton, Sedelia Rodriguez

Erschienen in: The Earth's Magnetic Interior

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oceanic crust is the carrier of the marine magnetic anomalies and is therefore a valuable archive of geomagnetic information. ODP/IODP Hole 1256D was the first to sample an entire sequence of oceanic crust down to the gabbro. We studied the vertical variation of magnetic remanence carriers by means of scanning electron microscopy, microanalysis and rock magnetic measurements. The extrusive layer contains dendritic, low-temperature oxidized titanomagnetites (TMs), i.e. titanomaghemite, with initial compositions close to values previously reported for mid-ocean ridge basalts (MORB). The degree of low-temperature oxidation (maghemitisation) remains fairly constant across the extrusives. We explain the observed increase in Curie temperature with depth by submicron inversion of titanomaghemite to intergrowths of titanomagnetite and nonmagnetic phases, where the Ti-content of titanomagnetite is decreasing with depth. In the underlying sheeted dikes, TMs are again the primary magnetic mineral. Due to slower cooling, they are in most cases oxy-exsolved into lamellar intergrowths of Ti-poor TMs and ilmenite. The magnetominerals are altered to a much higher degree than in the extrusives. In the gabbroic part of the section, TMs reach sizes up to several mm, although the magnetic grain size remains consistently in the pseudo-single-domain range because of grain subdivision by exsolution lamellae. The extrusives carry a thermoremanent magnetisation (TRM), retaining the primary paleomagnetic direction but with a reduced remanence intensity. The sheeted dikes hold a thermo-chemical remanent magnetization (TCRM) or secondary TRM acquired during hydrothermal alteration, whereas the underlying gabbro acquired a TCRM significantly after emplacement due to slow cooling at this depth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Acton GD, Petronotis KE, Cape CD, Ilg SR, Gordon RG, Bryan PC (1996) A test of the geocentric axial dipole hypothesis from an analysis of the skewness of the central marine magnetic anomaly. Earth Planet Sci Lett 144:337–346CrossRef Acton GD, Petronotis KE, Cape CD, Ilg SR, Gordon RG, Bryan PC (1996) A test of the geocentric axial dipole hypothesis from an analysis of the skewness of the central marine magnetic anomaly. Earth Planet Sci Lett 144:337–346CrossRef
Zurück zum Zitat Arkani-Hamed J (1988) Remanent magnetization of the oceanic upper mantle. Geophys Res Lett 15:48–51CrossRef Arkani-Hamed J (1988) Remanent magnetization of the oceanic upper mantle. Geophys Res Lett 15:48–51CrossRef
Zurück zum Zitat Arkani-Hamed J (1991) Thermoremanent magnetization of oceanic lithosphere inferred from a thermal evolution model: implications for the source of marine magnetic anomalies. Tectonophysics 192:81–96CrossRef Arkani-Hamed J (1991) Thermoremanent magnetization of oceanic lithosphere inferred from a thermal evolution model: implications for the source of marine magnetic anomalies. Tectonophysics 192:81–96CrossRef
Zurück zum Zitat Bleil U, Petersen N (1983) Variation in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301:384–388CrossRef Bleil U, Petersen N (1983) Variation in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301:384–388CrossRef
Zurück zum Zitat Carlut J, Kent DV (2002) Grain-size-dependent paleointensity results from very recent mid-oceanic ridge basalts. J Geophys Res. doi:10.1029/2001JB000439 Carlut J, Kent DV (2002) Grain-size-dependent paleointensity results from very recent mid-oceanic ridge basalts. J Geophys Res. doi:10.1029/2001JB000439
Zurück zum Zitat Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planetary Inter 13:260–267CrossRef Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys Earth Planetary Inter 13:260–267CrossRef
Zurück zum Zitat Doubrovine PV, Tarduno JA (2004) Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth Planet Sci Lett 222:959–969CrossRef Doubrovine PV, Tarduno JA (2004) Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth Planet Sci Lett 222:959–969CrossRef
Zurück zum Zitat Doubrovine PV, Tarduno JA (2006) Alteration and self-reversal in oceanic basalts. J Geophys Res. doi:10.1029/2006JB004468 Doubrovine PV, Tarduno JA (2006) Alteration and self-reversal in oceanic basalts. J Geophys Res. doi:10.1029/2006JB004468
Zurück zum Zitat Dunlop DJ (2002) Theory and application of the Day plot (M RS/M S versus H CR/H C) 1. theoretical curves and tests using titanomagnetite data. J Geophys Res. doi:10.1029/2001JB000486 Dunlop DJ (2002) Theory and application of the Day plot (M RS/M S versus H CR/H C) 1. theoretical curves and tests using titanomagnetite data. J Geophys Res. doi:10.1029/2001JB000486
Zurück zum Zitat Dyment J, Arkani-Hamed J, Ghods A (1997) Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies. Geophys J R Astron Soc 129:691–701. Dyment J, Arkani-Hamed J, Ghods A (1997) Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies. Geophys J R Astron Soc 129:691–701.
Zurück zum Zitat Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Kono M (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 455–507 Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Kono M (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 455–507
Zurück zum Zitat Gee J, Schneider DA, Kent DV (1996) Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth Planet Sci Lett 144:327–335CrossRef Gee J, Schneider DA, Kent DV (1996) Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth Planet Sci Lett 144:327–335CrossRef
Zurück zum Zitat Gee JS, Cande SC, Hildebrand JA, Donnelly K, Parker RL (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature 408:827–832CrossRef Gee JS, Cande SC, Hildebrand JA, Donnelly K, Parker RL (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature 408:827–832CrossRef
Zurück zum Zitat Johnson HP, Pariso JE (1993) Variations in oceanic crustal magnetization – systematic changes in the last 160 million years. J Geophys Res 98:435–445CrossRef Johnson HP, Pariso JE (1993) Variations in oceanic crustal magnetization – systematic changes in the last 160 million years. J Geophys Res 98:435–445CrossRef
Zurück zum Zitat Juarez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the past 160 million years. Nature 394:878–881CrossRef Juarez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the past 160 million years. Nature 394:878–881CrossRef
Zurück zum Zitat Kent DV, Gee J (1994) Grain size-dependent alteration and the magnetization of oceanic basalts. Science 265:1561–1563CrossRef Kent DV, Gee J (1994) Grain size-dependent alteration and the magnetization of oceanic basalts. Science 265:1561–1563CrossRef
Zurück zum Zitat Koepke J, Christie DM, Dziony W, Holtz F, Lattard D, Maclennan J, Park S, Scheibner B, Yamasaki T, Yamazaki S (2008) Petrography of the dike-gabbro transition at IODP Site 1256 (equatorial Pacific): the evolution of the granoblastic dikes. Geochem Geophys Geosyst. doi:10.1029/2008GC001939 Koepke J, Christie DM, Dziony W, Holtz F, Lattard D, Maclennan J, Park S, Scheibner B, Yamasaki T, Yamazaki S (2008) Petrography of the dike-gabbro transition at IODP Site 1256 (equatorial Pacific): the evolution of the granoblastic dikes. Geochem Geophys Geosyst. doi:10.1029/2008GC001939
Zurück zum Zitat Krása D, Matzka J (2007) Inversion of titanomaghemite in oceanic basalt during heating. Phys Earth Planetary Inter 160:169–179CrossRef Krása D, Matzka J (2007) Inversion of titanomaghemite in oceanic basalt during heating. Phys Earth Planetary Inter 160:169–179CrossRef
Zurück zum Zitat Laverne C, Grauby O, Alt JC, Bohn M (2006) Hydroschorlomite in altered basalts from Hole 1256D, ODP Leg 206: the transition from low-temperature to hydrothermal alteration. Geochem Geophys Geosyst. doi:10.1029/2005GC001180 Laverne C, Grauby O, Alt JC, Bohn M (2006) Hydroschorlomite in altered basalts from Hole 1256D, ODP Leg 206: the transition from low-temperature to hydrothermal alteration. Geochem Geophys Geosyst. doi:10.1029/2005GC001180
Zurück zum Zitat Matzka J, Krása D (2007) Oceanic basalt continuous thermal demagnetization curves. Geophys J Int 169:941–950CrossRef Matzka J, Krása D (2007) Oceanic basalt continuous thermal demagnetization curves. Geophys J Int 169:941–950CrossRef
Zurück zum Zitat Matzka J, Krása D, Kunzmann T, Schult A, Petersen N (2003) Magnetic state of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization. Earth Planet Sci Lett 206:541–553CrossRef Matzka J, Krása D, Kunzmann T, Schult A, Petersen N (2003) Magnetic state of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization. Earth Planet Sci Lett 206:541–553CrossRef
Zurück zum Zitat Petersen N, Eisenach P, Bleil U (1979) Low temperature alteration of the magnetic minerals in ocean floor basalts. In: Talwani M, Harrison CGA, Hayes D (eds) Deep drilling results in the atlantic ocean: ocean crust. American Geophysical Union, Washington, DC, pp 169–209 Petersen N, Eisenach P, Bleil U (1979) Low temperature alteration of the magnetic minerals in ocean floor basalts. In: Talwani M, Harrison CGA, Hayes D (eds) Deep drilling results in the atlantic ocean: ocean crust. American Geophysical Union, Washington, DC, pp 169–209
Zurück zum Zitat Petersen N, Vali H (1987) Observation of shrinkage cracks in ocean floor titanomagnetites. Phys Earth Planetary Inter 46:197–205CrossRef Petersen N, Vali H (1987) Observation of shrinkage cracks in ocean floor titanomagnetites. Phys Earth Planetary Inter 46:197–205CrossRef
Zurück zum Zitat Petronotis KE, Gordon RG, Acton GD (1992) Determining paleomagnetic poles and anomalous skewness from marine magnetic anomaly skewness data from a single plate. Geophys J Int 109:209–224CrossRef Petronotis KE, Gordon RG, Acton GD (1992) Determining paleomagnetic poles and anomalous skewness from marine magnetic anomaly skewness data from a single plate. Geophys J Int 109:209–224CrossRef
Zurück zum Zitat Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge
Zurück zum Zitat Readman PW, O’Reilly W (1970) The synthesis and inversion of non-stoichiometric titanomagnetites. Phys Earth Planetary Inter 4:121–128CrossRef Readman PW, O’Reilly W (1970) The synthesis and inversion of non-stoichiometric titanomagnetites. Phys Earth Planetary Inter 4:121–128CrossRef
Zurück zum Zitat Readman PW, O’Reilly W (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti, □)3O4. J Geomagnetism Geoelectricity 24:69–90 Readman PW, O’Reilly W (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti, □)3O4. J Geomagnetism Geoelectricity 24:69–90
Zurück zum Zitat Schneider DA (1988) An estimate of the long-term non-dipole field from marine magnetic-anomalies. Geophys Res Lett 15:1105–1108CrossRef Schneider DA (1988) An estimate of the long-term non-dipole field from marine magnetic-anomalies. Geophys Res Lett 15:1105–1108CrossRef
Zurück zum Zitat Smith PPK (1979) Identification of single-domain titanomagnetite particles by means of transmission electron-microscopy. Can J Earth Sci 16:375–379CrossRef Smith PPK (1979) Identification of single-domain titanomagnetite particles by means of transmission electron-microscopy. Can J Earth Sci 16:375–379CrossRef
Zurück zum Zitat Smith GM, Banerjee SK (1986) Magnetic-structure of the upper kilometer of the marine crust at deep-sea drilling project Hole-504b, Eastern Pacific-Ocean. J Geophys Res 91:337–354 Smith GM, Banerjee SK (1986) Magnetic-structure of the upper kilometer of the marine crust at deep-sea drilling project Hole-504b, Eastern Pacific-Ocean. J Geophys Res 91:337–354
Zurück zum Zitat Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, the Expedition 309/312 Scientists (2006) Proceedings of IODP, vol 309/312. Integrated Ocean Drilling Program Management International, Inc., Washington, DC Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, the Expedition 309/312 Scientists (2006) Proceedings of IODP, vol 309/312. Integrated Ocean Drilling Program Management International, Inc., Washington, DC
Zurück zum Zitat Tivey MA, Tucholke BE (1998) Magnetization of 0–29 Ma ocean crust on the Mid-Atlantic Ridge, 25 degrees 30’ to 27 degrees 10’ N. J Geophys Res 103:17807–17826CrossRef Tivey MA, Tucholke BE (1998) Magnetization of 0–29 Ma ocean crust on the Mid-Atlantic Ridge, 25 degrees 30’ to 27 degrees 10’ N. J Geophys Res 103:17807–17826CrossRef
Zurück zum Zitat Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949CrossRef Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949CrossRef
Zurück zum Zitat Wang D, R. Van der Voo, Peacor DR (2006) Low-temperature alteration and magnetic changes of variably altered pillow basalts. Geophys J Int 164:25–35CrossRef Wang D, R. Van der Voo, Peacor DR (2006) Low-temperature alteration and magnetic changes of variably altered pillow basalts. Geophys J Int 164:25–35CrossRef
Zurück zum Zitat Wilson DS, Teagle DAH, Acton GD, the Shipboard Scientific Party (2003) An in situ section of upper oceanic crust formed by superfast seafloor spreading at site 1256. Proceedings of ODP, initial Reports, vol 206. Ocean Drilling Program, College Station, TX Wilson DS, Teagle DAH, Acton GD, the Shipboard Scientific Party (2003) An in situ section of upper oceanic crust formed by superfast seafloor spreading at site 1256. Proceedings of ODP, initial Reports, vol 206. Ocean Drilling Program, College Station, TX
Zurück zum Zitat Wilson DS, Teagle DAH, Alt JC, Banerjee NR, Umino S, Miyashita S, Acton GD, Anma R, Barr SR, Belghoul A, Carlut J, Christie DM, Coggon RM, Cooper KM, Cordier C, Crispini L, Durand SR, Einaudi F, Galli L, Gao YJ, Geldmacher J, Gilbert LA, Hayman NW, Herrero-Bervera E, Hirano N, Holter S, Ingle S, Jiang SJ, Kalberkamp U, Kerneklian M, Koepke J, Laverne C, Vasquez HLL, Maclennan J, Morgan S, Neo N, Nichols HJ, Park SH, Reichow MK, Sakuyama T, Sano T, Sandwell R, Scheibner B, Smith-Duque CE, Swift SA, Tartarotti P, Tikku AA, Tominaga M, Veloso EA, Yamasaki T, Yamazaki S, Ziegler C (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020CrossRef Wilson DS, Teagle DAH, Alt JC, Banerjee NR, Umino S, Miyashita S, Acton GD, Anma R, Barr SR, Belghoul A, Carlut J, Christie DM, Coggon RM, Cooper KM, Cordier C, Crispini L, Durand SR, Einaudi F, Galli L, Gao YJ, Geldmacher J, Gilbert LA, Hayman NW, Herrero-Bervera E, Hirano N, Holter S, Ingle S, Jiang SJ, Kalberkamp U, Kerneklian M, Koepke J, Laverne C, Vasquez HLL, Maclennan J, Morgan S, Neo N, Nichols HJ, Park SH, Reichow MK, Sakuyama T, Sano T, Sandwell R, Scheibner B, Smith-Duque CE, Swift SA, Tartarotti P, Tikku AA, Tominaga M, Veloso EA, Yamasaki T, Yamazaki S, Ziegler C (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020CrossRef
Zurück zum Zitat Xu WX, Peacor DR, Dollase WA, Van der Voo R, Beaubouef R (1997) Transformation of titanomagnetite to titanomaghemite: a slow, two-step, oxidation-ordering process in MORE. Am Mineral 82:1101–1110 Xu WX, Peacor DR, Dollase WA, Van der Voo R, Beaubouef R (1997) Transformation of titanomagnetite to titanomaghemite: a slow, two-step, oxidation-ordering process in MORE. Am Mineral 82:1101–1110
Zurück zum Zitat Zhou WM, Peacor DR, Van der Voo R, Mansfield JF (1999a) Determination of lattice parameter, oxidation state, and composition of individual titanomagnetite/titanomaghemite grains by transmission electron microscopy. J Geophys Res 104:17689–17702CrossRef Zhou WM, Peacor DR, Van der Voo R, Mansfield JF (1999a) Determination of lattice parameter, oxidation state, and composition of individual titanomagnetite/titanomaghemite grains by transmission electron microscopy. J Geophys Res 104:17689–17702CrossRef
Zurück zum Zitat Zhou WM, Van der Voo R, Peacor DR (1999b) Preservation of pristine titanomagnetite in older ocean-floor basalts and its significance for paleointensity studies. Geology 27:1043–1046CrossRef Zhou WM, Van der Voo R, Peacor DR (1999b) Preservation of pristine titanomagnetite in older ocean-floor basalts and its significance for paleointensity studies. Geology 27:1043–1046CrossRef
Zurück zum Zitat Zhou WM, Van der Voo R, Peacor DR, Wang DM, Zhang YX (2001) Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: a gradual process with implications for marine magnetic anomaly amplitudes. J Geophys Res 106:6409–6421CrossRef Zhou WM, Van der Voo R, Peacor DR, Wang DM, Zhang YX (2001) Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: a gradual process with implications for marine magnetic anomaly amplitudes. J Geophys Res 106:6409–6421CrossRef
Zurück zum Zitat Zhou WM, Van der Voo R, Peacor DR, Zhang YX (2000) Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet Sci Lett 179:9–20CrossRef Zhou WM, Van der Voo R, Peacor DR, Zhang YX (2000) Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet Sci Lett 179:9–20CrossRef
Metadaten
Titel
Magnetic Mineralogy of a Complete Oceanic Crustal Section (IODP Hole 1256D)
verfasst von
David Krása
Emilio Herrero-Bervera
Gary Acton
Sedelia Rodriguez
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0323-0_12