Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2015

01.02.2015 | Research Paper

Magnetic nanoparticles in medical nanorobotics

verfasst von: Sylvain Martel

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519CrossRef Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519CrossRef
Zurück zum Zitat Belharet K, Folio D, Ferreira A (2013) Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng 60(4):994–1001CrossRef Belharet K, Folio D, Ferreira A (2013) Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng 60(4):994–1001CrossRef
Zurück zum Zitat Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61CrossRef Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61CrossRef
Zurück zum Zitat Branquinho LC et al (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3:2887CrossRef Branquinho LC et al (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3:2887CrossRef
Zurück zum Zitat Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865CrossRef Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865CrossRef
Zurück zum Zitat Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112:8127–8131CrossRef Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112:8127–8131CrossRef
Zurück zum Zitat Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898CrossRef Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898CrossRef
Zurück zum Zitat Guarda P et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRef Guarda P et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRef
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef
Zurück zum Zitat Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214 Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214
Zurück zum Zitat Jun YW et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnostic via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733CrossRef Jun YW et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnostic via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733CrossRef
Zurück zum Zitat Lacroix L-M et al (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys 105:023911CrossRef Lacroix L-M et al (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys 105:023911CrossRef
Zurück zum Zitat Lee JH et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech. 6:418CrossRef Lee JH et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech. 6:418CrossRef
Zurück zum Zitat Lee N et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vovo MRI in tumors. Nano Lett 12:3127–3131CrossRef Lee N et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vovo MRI in tumors. Nano Lett 12:3127–3131CrossRef
Zurück zum Zitat Martel S (2013a) Bacterial microsystems and microrobots. Biomed Microdevices 14(6):1033–1045CrossRef Martel S (2013a) Bacterial microsystems and microrobots. Biomed Microdevices 14(6):1033–1045CrossRef
Zurück zum Zitat Martel S (2013b) Navigation control of micro-agents in the vascular network: challenges and strategies for endovascular magnetic navigation control of microscale drug delivery carriers. IEEE Cont Syst 33(6):119–134CrossRef Martel S (2013b) Navigation control of micro-agents in the vascular network: challenges and strategies for endovascular magnetic navigation control of microscale drug delivery carriers. IEEE Cont Syst 33(6):119–134CrossRef
Zurück zum Zitat Martel S (2014) Magnetic therapeutic delivery using navigable agents. Ther Deliv 5:189–204CrossRef Martel S (2014) Magnetic therapeutic delivery using navigable agents. Ther Deliv 5:189–204CrossRef
Zurück zum Zitat Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan É, Tamaz S, Pouponneau P, Beaudoin G, Soulez G, Yahia L’H, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105CrossRef Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan É, Tamaz S, Pouponneau P, Beaudoin G, Soulez G, Yahia L’H, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105CrossRef
Zurück zum Zitat Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009a) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J Robot Res (IJRR) 28(4):571–582CrossRef Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009a) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J Robot Res (IJRR) 28(4):571–582CrossRef
Zurück zum Zitat Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009b) MRI-based nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J Robot Res (IJRR) 28(9):1169–1182CrossRef Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009b) MRI-based nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J Robot Res (IJRR) 28(9):1169–1182CrossRef
Zurück zum Zitat Martinex-Boubeta C et al (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3:1652 Martinex-Boubeta C et al (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3:1652
Zurück zum Zitat Martinez-Boubeta C et al (2010) Self-assembled Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomed. Nanotech. Biol. Med. 6:362–370CrossRef Martinez-Boubeta C et al (2010) Self-assembled Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomed. Nanotech. Biol. Med. 6:362–370CrossRef
Zurück zum Zitat Mathieu J-B, Martel S (2009) Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J. Appl Phys. 106:1–044904CrossRef Mathieu J-B, Martel S (2009) Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J. Appl Phys. 106:1–044904CrossRef
Zurück zum Zitat Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53(2):292–299CrossRef Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53(2):292–299CrossRef
Zurück zum Zitat Meffre A et al (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12:4722–4728CrossRef Meffre A et al (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12:4722–4728CrossRef
Zurück zum Zitat Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175CrossRef Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175CrossRef
Zurück zum Zitat Ngo A-T, Pileni M-P (2000) Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties. Adv Mater 12(4):276–279CrossRef Ngo A-T, Pileni M-P (2000) Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties. Adv Mater 12(4):276–279CrossRef
Zurück zum Zitat Pouponneau P, Leroux J-C, Soulez G, Gaboury L, Martel S (2011) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13):3481–3486CrossRef Pouponneau P, Leroux J-C, Soulez G, Gaboury L, Martel S (2011) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13):3481–3486CrossRef
Zurück zum Zitat Pouponneau P, Segura V, Savadogo O, Lweroux J-C, Martel S (2012) Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J Nanopart Res 14:1307–1320CrossRef Pouponneau P, Segura V, Savadogo O, Lweroux J-C, Martel S (2012) Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J Nanopart Res 14:1307–1320CrossRef
Zurück zum Zitat Pouponneau P, Bringout G, Martel S (2014) Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembolization: a design review”. Ann Biomed Eng 42(5):929–939CrossRef Pouponneau P, Bringout G, Martel S (2014) Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembolization: a design review”. Ann Biomed Eng 42(5):929–939CrossRef
Zurück zum Zitat Reiss G, Hutten A (2005) Magnetic nanoparticles–Applications beyond data storage. Nat Mater 4:725–726CrossRef Reiss G, Hutten A (2005) Magnetic nanoparticles–Applications beyond data storage. Nat Mater 4:725–726CrossRef
Zurück zum Zitat Serantes et al (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108:073918CrossRef Serantes et al (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108:073918CrossRef
Zurück zum Zitat Serantes et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef Serantes et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef
Zurück zum Zitat Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. PNAS 101(30):10901–10906CrossRef Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. PNAS 101(30):10901–10906CrossRef
Zurück zum Zitat Tabatabaei SN, Lapointe J, Martel S (2011) Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv. Robot 25:1049–1067CrossRef Tabatabaei SN, Lapointe J, Martel S (2011) Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv. Robot 25:1049–1067CrossRef
Zurück zum Zitat Tabatabaei SN, Duchemin S, Girouard H, Martel S (2012) Towards MR-navigable nanorobotic carriers for drug delivery into the brain, IEEE Conf. Robot Autom 14:727–732 Tabatabaei SN, Duchemin S, Girouard H, Martel S (2012) Towards MR-navigable nanorobotic carriers for drug delivery into the brain, IEEE Conf. Robot Autom 14:727–732
Zurück zum Zitat Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRef Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRef
Zurück zum Zitat Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009a) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667CrossRef Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009a) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667CrossRef
Zurück zum Zitat Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009b) Size-dependent endocytosis of nanoparticles. Adv. Matter. 21:419CrossRef Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009b) Size-dependent endocytosis of nanoparticles. Adv. Matter. 21:419CrossRef
Metadaten
Titel
Magnetic nanoparticles in medical nanorobotics
verfasst von
Sylvain Martel
Publikationsdatum
01.02.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2734-2

Weitere Artikel der Ausgabe 2/2015

Journal of Nanoparticle Research 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.