Skip to main content

2013 | OriginalPaper | Buchkapitel

5. Magnetic Properties of Uncultivated Magnetotactic Bacteria

verfasst von : Wei Lin

Erschienen in: Diversity, Biomineralization and Rock Magnetism of Magnetotactic Bacteria

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetite is a stable carrier of natural remanent magnetization in sedimentary rocks and sediments. Studies of magnetite preserved in sediments provide novel knowledge in paleomagnetic directions and paleointensity of the geomagnetic field. However, our understanding of magnetic properties of ultrafine-grained magnetite particles is still very poor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alphandéry, E., Carvallo, C., Menguy, N., & Chebbi, I. (2011). Chains of cobalt eoped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. Journal of Physical Chemistry C, 115, 11920–11924.CrossRef Alphandéry, E., Carvallo, C., Menguy, N., & Chebbi, I. (2011). Chains of cobalt eoped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. Journal of Physical Chemistry C, 115, 11920–11924.CrossRef
Zurück zum Zitat Barber, D. J., & Scott, E. R. D. (2002). Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proceedings of the National Academy of Sciences of the United States of America, 99, 6556–6561.CrossRef Barber, D. J., & Scott, E. R. D. (2002). Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proceedings of the National Academy of Sciences of the United States of America, 99, 6556–6561.CrossRef
Zurück zum Zitat Carter-Stiglitz, B., Moskowitz, B., & Jackson, M. (2001). Unmixing magnetic assemblages and the magnetic behavior of bimodal mixtures. Journal of Geophysical Research, 106, 26397–26411.CrossRef Carter-Stiglitz, B., Moskowitz, B., & Jackson, M. (2001). Unmixing magnetic assemblages and the magnetic behavior of bimodal mixtures. Journal of Geophysical Research, 106, 26397–26411.CrossRef
Zurück zum Zitat Carter-Stiglitz, B., Jackson, M., & Moskowitz, B. (2002). Low-temperature remanence in stable single domain magnetite. Geophysical Research Letters, 29. doi:10.1029/2001GL014197. Carter-Stiglitz, B., Jackson, M., & Moskowitz, B. (2002). Low-temperature remanence in stable single domain magnetite. Geophysical Research Letters, 29. doi:10.​1029/​2001GL014197.
Zurück zum Zitat Chen, A.P., Egli, R., and Moskowitz, B.M. (2007) First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles. Journal of Geophysical Research, 112: doi:10.1029/2006JB004575. Chen, A.P., Egli, R., and Moskowitz, B.M. (2007) First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles. Journal of Geophysical Research, 112: doi:10.​1029/​2006JB004575.
Zurück zum Zitat Cisowski, S. (1981). Interacting vs. non-interacting single domain behavior in natural and synthetic samples. Physics of the Earth and Planetary Interiors, 26, 56–62.CrossRef Cisowski, S. (1981). Interacting vs. non-interacting single domain behavior in natural and synthetic samples. Physics of the Earth and Planetary Interiors, 26, 56–62.CrossRef
Zurück zum Zitat Dankers, P. (1981). Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal of the Royal Astronomical Society, 64, 447–461.CrossRef Dankers, P. (1981). Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal of the Royal Astronomical Society, 64, 447–461.CrossRef
Zurück zum Zitat Dunlop, D. J. (2002a). Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107. doi:10.1029/2001JB000486. Dunlop, D. J. (2002a). Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107. doi:10.​1029/​2001JB000486.
Zurück zum Zitat Dunlop, D.J. (2002b) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research, 107. doi:10.1029/2001JB000487. Dunlop, D.J. (2002b) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research, 107. doi:10.​1029/​2001JB000487.
Zurück zum Zitat Egli, R. (2004). Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Physics and Chemistry of the Earth, 29, 869–884.CrossRef Egli, R. (2004). Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Physics and Chemistry of the Earth, 29, 869–884.CrossRef
Zurück zum Zitat Fischer, H., Mastrogiacomo, G., Loffler, J. F., Warthmann, R. J., Weidler, P. G., & Gehring, A. U. (2008). Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense. Earth and Planetary Science Letters, 270, 200–208.CrossRef Fischer, H., Mastrogiacomo, G., Loffler, J. F., Warthmann, R. J., Weidler, P. G., & Gehring, A. U. (2008). Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense. Earth and Planetary Science Letters, 270, 200–208.CrossRef
Zurück zum Zitat Golden, D., Ming, D., Morris, R., Brearley, A., Lauer, H., Treiman, A., et al. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695. Golden, D., Ming, D., Morris, R., Brearley, A., Lauer, H., Treiman, A., et al. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695.
Zurück zum Zitat Jimenez-Lopez, C., Romanek, C. S., & Bazylinski, D.A. (2010). Magnetite as a prokaryotic biomarker: A review. Journal of Geophysical Research-Biogeosciences 115. doi:10.1029/2009JG001152 Jimenez-Lopez, C., Romanek, C. S., & Bazylinski, D.A. (2010). Magnetite as a prokaryotic biomarker: A review. Journal of Geophysical Research-Biogeosciences 115. doi:10.​1029/​2009JG001152
Zurück zum Zitat Kopp, R. E., Weiss, B. P., Maloof, A. C., Vali, H., Nash, C. Z., & Kirschvink, J. L. (2006). Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth and Planetary Science Letters, 247, 10–25.CrossRef Kopp, R. E., Weiss, B. P., Maloof, A. C., Vali, H., Nash, C. Z., & Kirschvink, J. L. (2006). Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth and Planetary Science Letters, 247, 10–25.CrossRef
Zurück zum Zitat Lang, C., Schüler, D., & Faivre, D. (2007). Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromolecular Biosafety, 7, 144–151.CrossRef Lang, C., Schüler, D., & Faivre, D. (2007). Synthesis of magnetite nanoparticles for bio- and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromolecular Biosafety, 7, 144–151.CrossRef
Zurück zum Zitat Li, J., Pan, Y., Chen, G., Liu, Q., Tian, L., & Lin, W. (2009). Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: Transmission electron microscopy and magnetic observations. Geophysical Journal International, 177, 33–42.CrossRef Li, J., Pan, Y., Chen, G., Liu, Q., Tian, L., & Lin, W. (2009). Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: Transmission electron microscopy and magnetic observations. Geophysical Journal International, 177, 33–42.CrossRef
Zurück zum Zitat Li, J., Pan, Y., Liu, Q., Yu-Zhang, K., Menguy, N., Che, R., et al. (2010). Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth and Planetary Science Letters, 293, 368–376.CrossRef Li, J., Pan, Y., Liu, Q., Yu-Zhang, K., Menguy, N., Che, R., et al. (2010). Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth and Planetary Science Letters, 293, 368–376.CrossRef
Zurück zum Zitat Lin, W., & Pan, Y. (2009). Uncultivated magnetotactic cocci from Yuandadu park in Beijing, China. Applied and Environment Microbiology, 75, 4046–4052.CrossRef Lin, W., & Pan, Y. (2009). Uncultivated magnetotactic cocci from Yuandadu park in Beijing, China. Applied and Environment Microbiology, 75, 4046–4052.CrossRef
Zurück zum Zitat Lippert, P. C., & Zachos, J.C. (2007). A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey. Paleoceanography, 22. doi:10.1029/2007PA001471. Lippert, P. C., & Zachos, J.C. (2007). A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey. Paleoceanography, 22. doi:10.​1029/​2007PA001471.
Zurück zum Zitat Martel, J., Young, D., Peng, H–. H., Wu, C.-Y., & Young, J. D. (2012). Biomimetic properties of minerals and the search for life in the Martian meteorite ALH84001. Annual Review of Earth and Planetary Sciences, 40, 167–193.CrossRef Martel, J., Young, D., Peng, H–. H., Wu, C.-Y., & Young, J. D. (2012). Biomimetic properties of minerals and the search for life in the Martian meteorite ALH84001. Annual Review of Earth and Planetary Sciences, 40, 167–193.CrossRef
Zurück zum Zitat McKay, D., Gibson, E., Thomas-Keprta, K., Vali, H., Romanek, C., Clemett, S., et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.CrossRef McKay, D., Gibson, E., Thomas-Keprta, K., Vali, H., Romanek, C., Clemett, S., et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.CrossRef
Zurück zum Zitat Moskowitz, B. M. (1988). Magnetic properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 73, 273–288.CrossRef Moskowitz, B. M. (1988). Magnetic properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 73, 273–288.CrossRef
Zurück zum Zitat Moskowitz, B. M., Frankel, R. B., & Bazylinski, D. A. (1993). Rock magnetic criteria for the detection of biogenic magnetite. Earth and Planetary Science Letters, 120, 283–300.CrossRef Moskowitz, B. M., Frankel, R. B., & Bazylinski, D. A. (1993). Rock magnetic criteria for the detection of biogenic magnetite. Earth and Planetary Science Letters, 120, 283–300.CrossRef
Zurück zum Zitat Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W., & Lovley, D. R. (1989). A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophysical Research Letters, 16, 665–668.CrossRef Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W., & Lovley, D. R. (1989). A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria. Geophysical Research Letters, 16, 665–668.CrossRef
Zurück zum Zitat Moskowitz, B. M., Bazylinski, D. A., Egli, R., Frankel, R. B., & Edwards, K. J. (2008). Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophysical Journal International, 174, 75–92.CrossRef Moskowitz, B. M., Bazylinski, D. A., Egli, R., Frankel, R. B., & Edwards, K. J. (2008). Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophysical Journal International, 174, 75–92.CrossRef
Zurück zum Zitat Muxworthy, A. R., & Williams, W. (2009). Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals. Journal of the Royal Society Interface, 6, 1207–1212.CrossRef Muxworthy, A. R., & Williams, W. (2009). Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals. Journal of the Royal Society Interface, 6, 1207–1212.CrossRef
Zurück zum Zitat Pósfai, M., Moskowitz, B. M., Arato, B., Schüler, D., Flies, C., Bazylinski, D. A., et al. (2006). Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth and Planetary Science Letters, 249, 444–455.CrossRef Pósfai, M., Moskowitz, B. M., Arato, B., Schüler, D., Flies, C., Bazylinski, D. A., et al. (2006). Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth and Planetary Science Letters, 249, 444–455.CrossRef
Zurück zum Zitat Pan, Y., Deng, C., Liu, Q., Petersen, N., & Zhu, R. (2004). Biomineralization and magnetism of bacterial magnetosomes. Chinese Science Bulletin, 49, 2563–2568.CrossRef Pan, Y., Deng, C., Liu, Q., Petersen, N., & Zhu, R. (2004). Biomineralization and magnetism of bacterial magnetosomes. Chinese Science Bulletin, 49, 2563–2568.CrossRef
Zurück zum Zitat Pan, Y., Petersen, N., Winklhofer, M., Davila, A., Liu, Q., Frederichs, T., et al. (2005). Rock magnetic properties of uncultured magnetotactic bacteria. Earth and Planetary Science Letters, 237, 311–325.CrossRef Pan, Y., Petersen, N., Winklhofer, M., Davila, A., Liu, Q., Frederichs, T., et al. (2005). Rock magnetic properties of uncultured magnetotactic bacteria. Earth and Planetary Science Letters, 237, 311–325.CrossRef
Zurück zum Zitat Pike, C. R., Roberts, A. P., & Verosub, K. L. (1999). Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85, 6660–6667.CrossRef Pike, C. R., Roberts, A. P., & Verosub, K. L. (1999). Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85, 6660–6667.CrossRef
Zurück zum Zitat Prozorov, R., Prozorov, T., Mallapragada, S. K., Narasimhan, B., Williams, T. J., & Bazylinski, D. A. (2007), Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Physical Review B, 76. doi:10.1103/PhysRevB.1176.054406. Prozorov, R., Prozorov, T., Mallapragada, S. K., Narasimhan, B., Williams, T. J., & Bazylinski, D. A. (2007), Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Physical Review B, 76. doi:10.​1103/​PhysRevB.​1176.​054406.
Zurück zum Zitat Roberts, A. P., Pike, C. R., & Verosub, K. L. (2000). First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research-Solid Earth, 105, 28461–28475.CrossRef Roberts, A. P., Pike, C. R., & Verosub, K. L. (2000). First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research-Solid Earth, 105, 28461–28475.CrossRef
Zurück zum Zitat Sprowl, D. R. (1990). Numerical estimation of interactive effects in single-domain magnetite. Geophysical Research Letters, 17, 2009–2012.CrossRef Sprowl, D. R. (1990). Numerical estimation of interactive effects in single-domain magnetite. Geophysical Research Letters, 17, 2009–2012.CrossRef
Zurück zum Zitat Staniland, S., Williams, W., Telling, N., van der Laan, G., Harrison, A., & Ward, B. (2008). Controlled cobalt doping of magnetosomes in vivo. Nature Nanotechnology, 3, 158–162.CrossRef Staniland, S., Williams, W., Telling, N., van der Laan, G., Harrison, A., & Ward, B. (2008). Controlled cobalt doping of magnetosomes in vivo. Nature Nanotechnology, 3, 158–162.CrossRef
Zurück zum Zitat Thomas-Keprta, K. L., Clemett, S. J., McKay, D. S., Gibson, E. K., & Wentworth, S. J. (2009). Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochimica et Cosmochimica Acta, 73, 6631–6677.CrossRef Thomas-Keprta, K. L., Clemett, S. J., McKay, D. S., Gibson, E. K., & Wentworth, S. J. (2009). Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochimica et Cosmochimica Acta, 73, 6631–6677.CrossRef
Zurück zum Zitat Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., et al. (2001). Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proceedings of the National Academy of Sciences of the United States of America, 98, 2164–2169.CrossRef Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., et al. (2001). Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proceedings of the National Academy of Sciences of the United States of America, 98, 2164–2169.CrossRef
Zurück zum Zitat Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., et al. (2004a). Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proceedings of the National Academy of Sciences of the United States of America, 101, 8281–8284.CrossRef Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., et al. (2004a). Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proceedings of the National Academy of Sciences of the United States of America, 101, 8281–8284.CrossRef
Zurück zum Zitat Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., et al. (2004b). Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth and Planetary Science Letters, 224, 73–89.CrossRef Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., et al. (2004b). Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth and Planetary Science Letters, 224, 73–89.CrossRef
Zurück zum Zitat Xie, J., Chen, K., & Chen, X. Y. (2009). Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2, 261–278.CrossRef Xie, J., Chen, K., & Chen, X. Y. (2009). Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2, 261–278.CrossRef
Zurück zum Zitat Yoshino, T., Maeda, Y., & Matsunag, T. (2010). Bioengineering of bacterial magnetic particles and their applications in biotechnology. Recent Patents on Biotechnology, 4, 214–225.CrossRef Yoshino, T., Maeda, Y., & Matsunag, T. (2010). Bioengineering of bacterial magnetic particles and their applications in biotechnology. Recent Patents on Biotechnology, 4, 214–225.CrossRef
Metadaten
Titel
Magnetic Properties of Uncultivated Magnetotactic Bacteria
verfasst von
Wei Lin
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-38262-8_5