Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2019

01.10.2019 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic State and Phase Composition of Co3C Nanoparticles

verfasst von: K. N. Mikhalev, A. Yu. Germov, E. Yu. Medvedev, A. P. Gerashchenko, A. E. Ermakov, M. A. Uimin, S. I. Novikov, T. V. D’yachkova, A. P. Tyutyunnik, Yu. G. Zainulin

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoparticles Co3C were prepared using solid-phase synthesis under high pressure. The phase composition of the nanoparticles has been analyzed; the magnetization has been measured and 59Со NMR spectra in a local field have been recorded. It is shown that Co3C is a ferromagnet with the Curie temperature TC = 498(10) K. The hyperfine fields and components of electric field gradient tensor were determined for two nonequivalent Co positions in the carbide. The obtained hyperfine fields correspond to the spin state of Co ions S = 1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. G. Sharoyan, A. A. Mirrahkanyan, H. T. Gyulasaryan, A. N. Kocheryan, and A. S. Makuryan, “FMR and EPR in Ni@C nanocomposites: size and concentration effects,” J. Contemp. Phys. 52, 147–154 (2017).CrossRef E. G. Sharoyan, A. A. Mirrahkanyan, H. T. Gyulasaryan, A. N. Kocheryan, and A. S. Makuryan, “FMR and EPR in Ni@C nanocomposites: size and concentration effects,” J. Contemp. Phys. 52, 147–154 (2017).CrossRef
2.
Zurück zum Zitat S. D. Bader, “Colloquium: opportunities in nanomagnetism,” Rev. Mod. Phys. 78, 1–15 (2006).CrossRef S. D. Bader, “Colloquium: opportunities in nanomagnetism,” Rev. Mod. Phys. 78, 1–15 (2006).CrossRef
3.
Zurück zum Zitat X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).CrossRef X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).CrossRef
4.
Zurück zum Zitat S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys.: Condens. Matter. 16, 1135–1150 (2004). S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys.: Condens. Matter. 16, 1135–1150 (2004).
5.
Zurück zum Zitat S. Momet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy,” J. Mater. Chem. 14, 2161–2175 (2004).CrossRef S. Momet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy,” J. Mater. Chem. 14, 2161–2175 (2004).CrossRef
6.
Zurück zum Zitat D. Ung, Y. Soumare, N. Chakroune, G. Viau, M.‑J. Vaulay, V. Richard, and F. Fievet, “Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets,” Chem. Mater. 19, 2084–2094 (2007).CrossRef D. Ung, Y. Soumare, N. Chakroune, G. Viau, M.‑J. Vaulay, V. Richard, and F. Fievet, “Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets,” Chem. Mater. 19, 2084–2094 (2007).CrossRef
7.
Zurück zum Zitat B. Viswanath, P. Kundu, A. Halder, and N. Ravishankar, “Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation,” J. Phys. Chem, 113, 1466–1473 (2009).CrossRef B. Viswanath, P. Kundu, A. Halder, and N. Ravishankar, “Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation,” J. Phys. Chem, 113, 1466–1473 (2009).CrossRef
8.
Zurück zum Zitat Y. Zhang, G. S. Chaubey, C. Rong, Y. Ding, N. Poudyal, P. Tsai, Q. Zhang, and J. P. Liu, “Controlled synthesis and magnetic properties of hard magnetic CoxC (x = 2, 3) nanocrystals,” J. Magn. Magn. Mater. 323, 1495–1500 (2011).CrossRef Y. Zhang, G. S. Chaubey, C. Rong, Y. Ding, N. Poudyal, P. Tsai, Q. Zhang, and J. P. Liu, “Controlled synthesis and magnetic properties of hard magnetic CoxC (x = 2, 3) nanocrystals,” J. Magn. Magn. Mater. 323, 1495–1500 (2011).CrossRef
9.
Zurück zum Zitat K. J. Carroll, Z. J. Huba, S. R. Spurgeon, M. Qian, S. N. Khanna, D. M. Hudgins, M. L. Taheri, and E. E. Carpenter, “Magnetic properties of Co2C and Co3C nanoparticles and their assemblies,” Appl. Phys. Lett. 101, 012409 (2012).CrossRef K. J. Carroll, Z. J. Huba, S. R. Spurgeon, M. Qian, S. N. Khanna, D. M. Hudgins, M. L. Taheri, and E. E. Carpenter, “Magnetic properties of Co2C and Co3C nanoparticles and their assemblies,” Appl. Phys. Lett. 101, 012409 (2012).CrossRef
10.
Zurück zum Zitat V. G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A. L. Geiler, J. Gao, C. N. Chinnasamy, L. Y. Levis, C. Vittoria, E. E. Karpenter, K. J. Carroll, R. Goswami, M. A. Willard, L. Kurihara, M. Gioka, and O. Kalogirou, “High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material,” J. Phys. D: Appl. Phys. 43, 165003 (2010).CrossRef V. G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A. L. Geiler, J. Gao, C. N. Chinnasamy, L. Y. Levis, C. Vittoria, E. E. Karpenter, K. J. Carroll, R. Goswami, M. A. Willard, L. Kurihara, M. Gioka, and O. Kalogirou, “High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material,” J. Phys. D: Appl. Phys. 43, 165003 (2010).CrossRef
11.
Zurück zum Zitat B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210–213 (2001).CrossRef B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210–213 (2001).CrossRef
12.
Zurück zum Zitat A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Rep. LAUR 86, 748–753 (2004). A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Rep. LAUR 86, 748–753 (2004).
13.
Zurück zum Zitat T. Ya. Kosolapova, Carbides (Metallurgiya, Moscow, 1968) [in Russian]. T. Ya. Kosolapova, Carbides (Metallurgiya, Moscow, 1968) [in Russian].
14.
Zurück zum Zitat K. N. Mikhalev, A. Yu. Germov, M. A. Uimin, A. E. Yermakov, A. S. Konev, S. I. Novikov, V. S. Gaviko, and Yu. S. Ponosov, “Magnetic state and phase composition of carbon-encapsulated Co@C nanoparticles according to 59Co, 13C NMR data and Raman spectroscopy,” Mater. Res. Express. 5, 055033 (2018).CrossRef K. N. Mikhalev, A. Yu. Germov, M. A. Uimin, A. E. Yermakov, A. S. Konev, S. I. Novikov, V. S. Gaviko, and Yu. S. Ponosov, “Magnetic state and phase composition of carbon-encapsulated Co@C nanoparticles according to 59Co, 13C NMR data and Raman spectroscopy,” Mater. Res. Express. 5, 055033 (2018).CrossRef
15.
Zurück zum Zitat I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, 1997) I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, 1997)
16.
Zurück zum Zitat A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Izdatel’stvo Inostrannoi Literatury, Moscow, 1963). A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Izdatel’stvo Inostrannoi Literatury, Moscow, 1963).
17.
Zurück zum Zitat A. P. Gerashchenko, S. V. Verkhovskii, A. F. Sadykov, A. G. Smol’nikov, Yu. V. Piskunov, and K. N. Mikhalev, Certificate of State. Registration of the Software “Simul” no. 2018663091 (October 22, 2018). A. P. Gerashchenko, S. V. Verkhovskii, A. F. Sadykov, A. G. Smol’nikov, Yu. V. Piskunov, and K. N. Mikhalev, Certificate of State. Registration of the Software “Simul” no. 2018663091 (October 22, 2018).
18.
Zurück zum Zitat K. N. Mikhalev, A. Yu. Germov, A. E. Ermakov, M. A. Uimin, A. L. Buzlukov, and O. M. Samatov, “Crystal structure and magnetic properties of Al2O3 nanoparticles by 27Al NMR data,” Phys. Solid State 59, 514–519 (2017).CrossRef K. N. Mikhalev, A. Yu. Germov, A. E. Ermakov, M. A. Uimin, A. L. Buzlukov, and O. M. Samatov, “Crystal structure and magnetic properties of Al2O3 nanoparticles by 27Al NMR data,” Phys. Solid State 59, 514–519 (2017).CrossRef
19.
Zurück zum Zitat E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro and Antiferromagnets (Nauka, Moscow, 1969) [in Russian]. E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro and Antiferromagnets (Nauka, Moscow, 1969) [in Russian].
20.
Zurück zum Zitat R. E. Watson and E. J. Freeman, Hyperfine Interactions in Solids, Ed. by A. J. Freeman, R. B. Frankel (Academic, New York, 1967; Nauka, Moscow, 1970). R. E. Watson and E. J. Freeman, Hyperfine Interactions in Solids, Ed. by A. J. Freeman, R. B. Frankel (Academic, New York, 1967; Nauka, Moscow, 1970).
21.
Zurück zum Zitat M. Kawakami, T. Hihara, Y. Koi, and T. Wakiyama, “The 59Co nuclear magnetic resonance in hexagonal cobalt,” J. Phys. Soc. Jpn. 33, 1591–15968 (1972).CrossRef M. Kawakami, T. Hihara, Y. Koi, and T. Wakiyama, “The 59Co nuclear magnetic resonance in hexagonal cobalt,” J. Phys. Soc. Jpn. 33, 1591–15968 (1972).CrossRef
22.
Zurück zum Zitat A. S. Andreev, O. B. Lapina, and S. V. Cherepanova, “New insight into cobalt metal powder internal field 59Co NMR spectra,” Appl. Magn. Reson. 45, 1009–1017 (2014).CrossRef A. S. Andreev, O. B. Lapina, and S. V. Cherepanova, “New insight into cobalt metal powder internal field 59Co NMR spectra,” Appl. Magn. Reson. 45, 1009–1017 (2014).CrossRef
Metadaten
Titel
Magnetic State and Phase Composition of Co3C Nanoparticles
verfasst von
K. N. Mikhalev
A. Yu. Germov
E. Yu. Medvedev
A. P. Gerashchenko
A. E. Ermakov
M. A. Uimin
S. I. Novikov
T. V. D’yachkova
A. P. Tyutyunnik
Yu. G. Zainulin
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19100090

Weitere Artikel der Ausgabe 10/2019

Physics of Metals and Metallography 10/2019 Zur Ausgabe