Skip to main content

1997 | OriginalPaper | Buchkapitel

MAHLER’S compactness theorem

verfasst von : J. W. S. Cassels

Erschienen in: An Introduction to the Geometry of Numbers

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

So far we have been concerned with one lattice at a time. In this chapter we are concerned with properties of sets of lattices. We first must define what is meant by two lattices Λ and M being near to each other; and this is done by means of homogeneous linear transformations. A homogeneous linear transformation X=τx of n-dimensional euclidean space into itself is said to be near to identity transformation if the coefficients τ ij in $$ {X_i} = \sum\limits_{1\underline \le \,i\,\underline \le \,n} {{\tau _{ij}}{x_j}} \,\,\left( {1\,\underline \le \,i\,\underline \le \,n} \right) $$ are near those of the identity transformation, that is if $$ \left| {{\tau _{ii}} - \,1} \right|\,\,\,\left( {1\,\,\underline \le \,i\,\underline \le \,n} \right) $$and $$ \left| {{\tau _{ij}}} \right|\,\,\,\,\left( {1\,\,\underline \le \,i\,\underline \le \,n,1\,\,\underline \le \,j\,\underline \le \,n,\,i \ne \,j\,} \right) $$ are all small.

Metadaten
Titel
MAHLER’S compactness theorem
verfasst von
J. W. S. Cassels
Copyright-Jahr
1997
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-62035-5_6