Skip to main content

2019 | OriginalPaper | Buchkapitel

MaLTESE: Large-Scale Simulation-Driven Machine Learning for Transient Driving Cycles

verfasst von : Shashi M. Aithal, Prasanna Balaprakash

Erschienen in: High Performance Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimal engine operation during a transient driving cycle is the key to achieving greater fuel economy, engine efficiency, and reduced emissions. In order to achieve continuously optimal engine operation, engine calibration methods use a combination of static correlations obtained from dynamometer tests for steady-state operating points and road and/or track performance data. As the parameter space of control variables, design variable constraints, and objective functions increases, the cost and duration for optimal calibration become prohibitively large. In order to reduce the number of dynamometer tests required for calibrating modern engines, a large-scale simulation-driven machine learning approach is presented in this work. A parallel, fast, robust, physics-based reduced-order engine simulator is used to obtain performance and emission characteristics of engines over a wide range of control parameters under various transient driving conditions (drive cycles). We scale the simulation up to 3,906 nodes of the Theta supercomputer at the Argonne Leadership Computing Facility to generate data required to train a machine learning model. The trained model is then used to predict various engine parameters of interest, and the results are compared with those predicted by the engine simulator. Our results show that a deep-neural-network-based surrogate model achieves high accuracy: Pearson product-moment correlation values larger than 0.99 and mean absolute percentage error within 1.07% for various engine parameters such as exhaust temperature, exhaust pressure, nitric oxide, and engine torque. Once trained, the deep-neural-network-based surrogate model is fast for inference: it requires about 16 \(\upmu \)s for predicting the engine performance and emissions for a single design configuration compared with about 0.5 s per configuration with the engine simulator. Moreover, we demonstrate that transfer learning and retraining can be leveraged to incrementally retrain the surrogate model to cope with new configurations that fall outside the training data space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Aptly named after a small, intelligent dog that loves to learn new tricks.
 
Literatur
1.
Zurück zum Zitat Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016) Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)
4.
Zurück zum Zitat Aithal, S.M.: Development of an integrated design tool for real-time analyses of performance and emissions in engines powered by alternative fuels. In: Proceedings of SAE 11th International Conference on Engines & Vehicles. SAE (2013) Aithal, S.M.: Development of an integrated design tool for real-time analyses of performance and emissions in engines powered by alternative fuels. In: Proceedings of SAE 11th International Conference on Engines & Vehicles. SAE (2013)
11.
Zurück zum Zitat Drucker, H.: Improving regressors using boosting techniques. In: ICML, vol. 97, pp. 107–115 (1997) Drucker, H.: Improving regressors using boosting techniques. In: ICML, vol. 97, pp. 107–115 (1997)
13.
Zurück zum Zitat Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)MATHCrossRef Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)MATHCrossRef
14.
Zurück zum Zitat Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)MATH
15.
Zurück zum Zitat Hashemi, N., Clark, N.: Artificial neural network as a predictive tool for emissions from heavy-duty diesel vehicles in Southern California. Int. J. Eng. Res. 8(4), 321–336 (2007)CrossRef Hashemi, N., Clark, N.: Artificial neural network as a predictive tool for emissions from heavy-duty diesel vehicles in Southern California. Int. J. Eng. Res. 8(4), 321–336 (2007)CrossRef
16.
Zurück zum Zitat Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)MATHCrossRef Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)MATHCrossRef
17.
Zurück zum Zitat Krijnsen, H.C., van Kooten, W.E., Calis, H.P.A., Verbeek, R.P., Bleek, C.M.: Prediction of NOx emissions from a transiently operating diesel engine using an artificial neural network. Chem. Eng. Technol. Industr. Chem. Plant Equip. Process Eng. Biotechnol. 22(7), 601–607 (1999) Krijnsen, H.C., van Kooten, W.E., Calis, H.P.A., Verbeek, R.P., Bleek, C.M.: Prediction of NOx emissions from a transiently operating diesel engine using an artificial neural network. Chem. Eng. Technol. Industr. Chem. Plant Equip. Process Eng. Biotechnol. 22(7), 601–607 (1999)
18.
Zurück zum Zitat LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
19.
Zurück zum Zitat Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)CrossRef Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)CrossRef
22.
Zurück zum Zitat Parlak, A., Islamoglu, Y., Yasar, H., Egrisogut, A.: Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl. Therm. Eng. 26(8–9), 824–828 (2006)CrossRef Parlak, A., Islamoglu, Y., Yasar, H., Egrisogut, A.: Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Appl. Therm. Eng. 26(8–9), 824–828 (2006)CrossRef
23.
Zurück zum Zitat Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
24.
Zurück zum Zitat Shrivastava, N., Khan, Z.M.: Application of soft computing in the field of internal combustion engines: a review. Arch. Comput. Meth. Eng. 25(3), 707–726 (2018)MATHCrossRef Shrivastava, N., Khan, Z.M.: Application of soft computing in the field of internal combustion engines: a review. Arch. Comput. Meth. Eng. 25(3), 707–726 (2018)MATHCrossRef
25.
Metadaten
Titel
MaLTESE: Large-Scale Simulation-Driven Machine Learning for Transient Driving Cycles
verfasst von
Shashi M. Aithal
Prasanna Balaprakash
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-20656-7_10

Premium Partner