Skip to main content

2018 | OriginalPaper | Buchkapitel

Manufacturing Techniques of Perovskite Solar Cells

verfasst von : Priyanka Kajal, Kunal Ghosh, Satvasheel Powar

Erschienen in: Applications of Solar Energy

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Perovskite solar cells (PSCs) are in focus of the solar cell development research for the last few years due to their high efficiency, cost-effective fabrication, and band gap tunability. Perovskite solar cell efficiency sharply increased from its initial reported efficiency of 3.8% in 2009 to 22.1% in 2016. This makes PSCs as the technology with the fastest growth rate in terms of the efficiency. Different device architectures have also been developed in an attempt to improve the PSC efficiency. At laboratory scale, a spin-coating process is employed to deposit different layers of PSCs. Though spin-coating process helps to achieve high efficiency, for large-scale production viability, researchers are developing different deposition techniques. A broad range of manufacturing techniques for perovskite-based solar cells have been tested and reported comprising drop casting, spray coating, ultrasonic spray coating, slot die coating, electrodeposition, CVD, thermal vapor deposition, vacuum deposition, screen printing, ink-jet printing, etc., with different device architectures. This chapter summarizes different PSC structures along with the corresponding manufacturing techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Asghar MI (2012) Stability issues of dye solar cells, vol 53 Asghar MI (2012) Stability issues of dye solar cells, vol 53
2.
Zurück zum Zitat Nema P, Nema RK, Rangnekar S (2009) A current and future state of art development of hybrid energy system using wind and PV-solar: a review. Renew Sustain Energy Rev 13(8):2096–2103CrossRef Nema P, Nema RK, Rangnekar S (2009) A current and future state of art development of hybrid energy system using wind and PV-solar: a review. Renew Sustain Energy Rev 13(8):2096–2103CrossRef
3.
Zurück zum Zitat Lund H, Kempton W (2008) Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36(9):3578–3587CrossRef Lund H, Kempton W (2008) Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36(9):3578–3587CrossRef
4.
Zurück zum Zitat Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524CrossRef Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524CrossRef
5.
Zurück zum Zitat Østergaard PA (2012) Comparing electricity, heat and biogas storages’ impacts on renewable energy integration. Energy 37(1):255–262 Østergaard PA (2012) Comparing electricity, heat and biogas storages’ impacts on renewable energy integration. Energy 37(1):255–262
6.
Zurück zum Zitat Lewis NS (2007) Solar energy use. Sol Energy 315:798–801 Lewis NS (2007) Solar energy use. Sol Energy 315:798–801
7.
Zurück zum Zitat Prasanthkumar S, Giribabu L (2016) Recent advances in perovskite-based solar cells. Curr Sci 111(7):1173–1181CrossRef Prasanthkumar S, Giribabu L (2016) Recent advances in perovskite-based solar cells. Curr Sci 111(7):1173–1181CrossRef
8.
Zurück zum Zitat Rand BP, Genoe J, Heremans P, Poortmans J (2015) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt Res Appl 15:659–676CrossRef Rand BP, Genoe J, Heremans P, Poortmans J (2015) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt Res Appl 15:659–676CrossRef
9.
Zurück zum Zitat T.I.R.E.A. (Irena) (2013) Solar photovoltaics technology brief. The International Renewable Energy Agency, pp 1–28 T.I.R.E.A. (Irena) (2013) Solar photovoltaics technology brief. The International Renewable Energy Agency, pp 1–28
10.
Zurück zum Zitat Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari AN (2010) Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18(6):434–452CrossRef Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari AN (2010) Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18(6):434–452CrossRef
11.
Zurück zum Zitat O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRef O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRef
12.
Zurück zum Zitat Pandey C (2015) Application of printing techniques in hybrid photovoltaic technologies Pandey C (2015) Application of printing techniques in hybrid photovoltaic technologies
13.
Zurück zum Zitat Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5(11):9180CrossRef Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5(11):9180CrossRef
14.
15.
Zurück zum Zitat Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M (2015) Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chem Commun 51(29):6315–6317CrossRef Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M (2015) Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chem Commun 51(29):6315–6317CrossRef
16.
Zurück zum Zitat Ubani CA, Ibrahim MA, Teridi MAM (2017) Moving into the domain of perovskite sensitized solar cell. Renew Sustain Energy Rev 72:907–915 Ubani CA, Ibrahim MA, Teridi MAM (2017) Moving into the domain of perovskite sensitized solar cell. Renew Sustain Energy Rev 72:907–915
17.
Zurück zum Zitat Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2016) Solar cell efficiency tables (version 48), version 48, pp 905–913 Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2016) Solar cell efficiency tables (version 48), version 48, pp 905–913
18.
Zurück zum Zitat Bai Y et al (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7:12806CrossRef Bai Y et al (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7:12806CrossRef
19.
Zurück zum Zitat Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater Chem A 5:11462–11482CrossRef Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater Chem A 5:11462–11482CrossRef
20.
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRef
21.
Zurück zum Zitat McGehee M (2014) Emerging high-efficiency low-cost solar cell technologies. NREL McGehee M (2014) Emerging high-efficiency low-cost solar cell technologies. NREL
22.
Zurück zum Zitat Sharma S, Jain KK, Sharma A (2015) Solar cells. in research and applications—a review. Mater Sci Appl 6(December):1145–1155 Sharma S, Jain KK, Sharma A (2015) Solar cells. in research and applications—a review. Mater Sci Appl 6(December):1145–1155
23.
Zurück zum Zitat Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980CrossRef Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980CrossRef
24.
Zurück zum Zitat Xing G, Mathews N, Lim SS, Lam YM, Mhaisalkar S, Sum TC (2013) Reports 10, vol 6960, no 2012, pp 498–500 Xing G, Mathews N, Lim SS, Lam YM, Mhaisalkar S, Sum TC (2013) Reports 10, vol 6960, no 2012, pp 498–500
25.
Zurück zum Zitat Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4(15):2423–2429CrossRef Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4(15):2423–2429CrossRef
26.
Zurück zum Zitat Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842CrossRef Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842CrossRef
27.
Zurück zum Zitat Koh TM et al (2014) Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118(30):16458–16462CrossRef Koh TM et al (2014) Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118(30):16458–16462CrossRef
28.
Zurück zum Zitat Karlin KD (2012) Progress in inorganic chemistry, vol 57 Karlin KD (2012) Progress in inorganic chemistry, vol 57
29.
Zurück zum Zitat Asghar MI, Zhang J, Wang H, Lund PD (2017) Device stability of perovskite solar cells—a review. Renew Sustain Energy Rev 77(February):131–146CrossRef Asghar MI, Zhang J, Wang H, Lund PD (2017) Device stability of perovskite solar cells—a review. Renew Sustain Energy Rev 77(February):131–146CrossRef
30.
Zurück zum Zitat Song Z, Watthage SC, Phillips AB, Heben MJ (2016) Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J Photon Energy 6(2):22001CrossRef Song Z, Watthage SC, Phillips AB, Heben MJ (2016) Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J Photon Energy 6(2):22001CrossRef
31.
Zurück zum Zitat Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398CrossRef Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398CrossRef
32.
Zurück zum Zitat Burschka J et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319CrossRef Burschka J et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319CrossRef
33.
Zurück zum Zitat Xiao Z et al (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci 7(8):2619CrossRef Xiao Z et al (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci 7(8):2619CrossRef
34.
Zurück zum Zitat Wang Y, Luo J, Nie R, Deng X (2016) Planar perovskite solar cells using CH 3 NH 3 PbI 3 films: a simple process suitable for large-scale production. Energy Technol 4(4):473–478CrossRef Wang Y, Luo J, Nie R, Deng X (2016) Planar perovskite solar cells using CH 3 NH 3 PbI 3 films: a simple process suitable for large-scale production. Energy Technol 4(4):473–478CrossRef
35.
Zurück zum Zitat Sutherland BR et al (2015) Perovskite thin films via atomic layer deposition. Adv Mater 27(1):53–58CrossRef Sutherland BR et al (2015) Perovskite thin films via atomic layer deposition. Adv Mater 27(1):53–58CrossRef
36.
Zurück zum Zitat Zheng J et al (2017) Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells 168(August):165–171CrossRef Zheng J et al (2017) Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells 168(August):165–171CrossRef
37.
Zurück zum Zitat Fakharuddin A, Jose R, Brown TM, Fabregat-Santiago F, Bisquert J (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci 7(12):3952–3981CrossRef Fakharuddin A, Jose R, Brown TM, Fabregat-Santiago F, Bisquert J (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci 7(12):3952–3981CrossRef
38.
Zurück zum Zitat Han Y et al (2015) Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 3(15):8139–8147CrossRef Han Y et al (2015) Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 3(15):8139–8147CrossRef
39.
Zurück zum Zitat Li X et al (2015) Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol 3(6):551–555CrossRef Li X et al (2015) Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol 3(6):551–555CrossRef
40.
Zurück zum Zitat Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93(4):465–475CrossRef Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93(4):465–475CrossRef
41.
Zurück zum Zitat Galagan Y, Coenen EWC, Verhees WJH, Andriessen R (2016) Towards the scaling up of perovskite solar cells and modules. J Mater Chem A 4(15):5700–5705CrossRef Galagan Y, Coenen EWC, Verhees WJH, Andriessen R (2016) Towards the scaling up of perovskite solar cells and modules. J Mater Chem A 4(15):5700–5705CrossRef
42.
Zurück zum Zitat Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9) Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9)
43.
Zurück zum Zitat Im JH, Kim HS, Park NG (2014) Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI 3. APL Mater 2(8) Im JH, Kim HS, Park NG (2014) Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI 3. APL Mater 2(8)
44.
Zurück zum Zitat Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, II Seok S (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903CrossRef Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, II Seok S (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903CrossRef
45.
Zurück zum Zitat Oku T, Matsumoto T, Suzuki A, Suzuki K (2015) Fabrication and characterization of a perovskite-type solar cell with a substrate size of 70 mm. Coatings 5(4):646–655CrossRef Oku T, Matsumoto T, Suzuki A, Suzuki K (2015) Fabrication and characterization of a perovskite-type solar cell with a substrate size of 70 mm. Coatings 5(4):646–655CrossRef
46.
Zurück zum Zitat Heo JH, Song DH, Im SH (2014) Planar CH 3 NH 3 PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process, pp 8179–8183 Heo JH, Song DH, Im SH (2014) Planar CH 3 NH 3 PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process, pp 8179–8183
47.
Zurück zum Zitat Yang M, Zhou Y, Zeng Y, Jiang CS, Padture NP, Zhu K (2015) Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv Mater 27(41):6363–6370CrossRef Yang M, Zhou Y, Zeng Y, Jiang CS, Padture NP, Zhu K (2015) Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv Mater 27(41):6363–6370CrossRef
48.
Zurück zum Zitat Chen W et al (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science (80) 350(6263):944–948 Chen W et al (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science (80) 350(6263):944–948
49.
Zurück zum Zitat Chang C, Huang Y, Tsao C, Su W (2016) Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering Chang C, Huang Y, Tsao C, Su W (2016) Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering
50.
Zurück zum Zitat Di Giacomo F, Fakharuddin A, Jose R, Brown TM (2016) Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci 9(10):3007–3035CrossRef Di Giacomo F, Fakharuddin A, Jose R, Brown TM (2016) Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci 9(10):3007–3035CrossRef
51.
Zurück zum Zitat Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J (2015) Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci 8(5):1544–1550CrossRef Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J (2015) Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci 8(5):1544–1550CrossRef
52.
Zurück zum Zitat Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412CrossRef Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412CrossRef
53.
Zurück zum Zitat Galagan Y et al (2015) Roll-to-roll slot-die coated organic photovoltaic (OPV) modules with high geometrical fill factors. Energy Technol 3(8):834–842CrossRef Galagan Y et al (2015) Roll-to-roll slot-die coated organic photovoltaic (OPV) modules with high geometrical fill factors. Energy Technol 3(8):834–842CrossRef
54.
Zurück zum Zitat Barrows AT, Pearson AJ, Kwak CK, Dunbar ADF, Buckley AR, Lidzey DG (2014) Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci 7(9):2944CrossRef Barrows AT, Pearson AJ, Kwak CK, Dunbar ADF, Buckley AR, Lidzey DG (2014) Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci 7(9):2944CrossRef
55.
Zurück zum Zitat Tait JG et al (2016) Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J Mater Chem A 4(10):3792–3797CrossRef Tait JG et al (2016) Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J Mater Chem A 4(10):3792–3797CrossRef
56.
Zurück zum Zitat Li S-G et al (2015) Inkjet printing of CH3 NH3 PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J Mater Chem A 3(17):9092–9097CrossRef Li S-G et al (2015) Inkjet printing of CH3 NH3 PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J Mater Chem A 3(17):9092–9097CrossRef
57.
Zurück zum Zitat Hwang K et al (2015) Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater 27(7):1241–1247CrossRef Hwang K et al (2015) Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater 27(7):1241–1247CrossRef
58.
Zurück zum Zitat Schmidt TM, Larsen-Olsen TT, Carlé JE, Angmo D, Krebs FC (2015) Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv Energy Mater 5(15):1–9CrossRef Schmidt TM, Larsen-Olsen TT, Carlé JE, Angmo D, Krebs FC (2015) Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv Energy Mater 5(15):1–9CrossRef
59.
Zurück zum Zitat Habibi M, Rahimzadeh A, Bennouna I, Eslamian M (2017) Defect-free large-area (25 cm2) light absorbing perovskite thin films made by spray coating. Coatings 7(3):42CrossRef Habibi M, Rahimzadeh A, Bennouna I, Eslamian M (2017) Defect-free large-area (25 cm2) light absorbing perovskite thin films made by spray coating. Coatings 7(3):42CrossRef
60.
Zurück zum Zitat Mohamad DK, Griffin J, Bracher C, Barrows AT, Lidzey DG (2016) Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv Energy Mater 6(22):1–7CrossRef Mohamad DK, Griffin J, Bracher C, Barrows AT, Lidzey DG (2016) Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv Energy Mater 6(22):1–7CrossRef
61.
Zurück zum Zitat Ramesh M, Boopathi KM, Huang TY, Huang YC, Tsao CS, Chu CW (2015) Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells. ACS Appl Mater Interfaces 7(4):2359–2366CrossRef Ramesh M, Boopathi KM, Huang TY, Huang YC, Tsao CS, Chu CW (2015) Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells. ACS Appl Mater Interfaces 7(4):2359–2366CrossRef
62.
Zurück zum Zitat Chandrasekhar PS, Kumar N, Swami SK, Dutta V, Komarala VK (2016) Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance. Nanoscale 8(12):6792–6800CrossRef Chandrasekhar PS, Kumar N, Swami SK, Dutta V, Komarala VK (2016) Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance. Nanoscale 8(12):6792–6800CrossRef
63.
Zurück zum Zitat Habibi M (2017) Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells, vol 7, no 2 Habibi M (2017) Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells, vol 7, no 2
64.
Zurück zum Zitat Shen P-S, Chiang Y-H, Li M-H, Guo T-F, Chen P (2016) Research update: hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Mater. 4(9):91509CrossRef Shen P-S, Chiang Y-H, Li M-H, Guo T-F, Chen P (2016) Research update: hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Mater. 4(9):91509CrossRef
65.
Zurück zum Zitat Das S et al (2015) High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon 2(6):680–686CrossRef Das S et al (2015) High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon 2(6):680–686CrossRef
66.
Zurück zum Zitat Zheng J et al (2017) Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells 168(February):165–171CrossRef Zheng J et al (2017) Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells 168(February):165–171CrossRef
67.
Zurück zum Zitat Zhang M, Yu H, Yun J-H, Lyu M, Wang Q, Wang L (2015) Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chem Commun 51(49):10038–10041CrossRef Zhang M, Yu H, Yun J-H, Lyu M, Wang Q, Wang L (2015) Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chem Commun 51(49):10038–10041CrossRef
68.
Zurück zum Zitat Zheng J et al (2017) Solar energy materials and solar cells spin-coating free fabrication for highly efficient perovskite solar cells, vol 168, pp 165–171 Zheng J et al (2017) Solar energy materials and solar cells spin-coating free fabrication for highly efficient perovskite solar cells, vol 168, pp 165–171
69.
Zurück zum Zitat Razza S et al (2015) Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J Power Sources 277(2015):286–291CrossRef Razza S et al (2015) Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J Power Sources 277(2015):286–291CrossRef
70.
Zurück zum Zitat Yang Z, Chueh CC, Zuo F, Kim JH, Liang PW, Jen AKY (2015) High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater 5(13):1–6CrossRef Yang Z, Chueh CC, Zuo F, Kim JH, Liang PW, Jen AKY (2015) High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater 5(13):1–6CrossRef
71.
Zurück zum Zitat Kim JH, Williams ST, Cho N, Chueh CC, Jen AKY (2015) Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv Energy Mater 5(4):2–7CrossRef Kim JH, Williams ST, Cho N, Chueh CC, Jen AKY (2015) Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv Energy Mater 5(4):2–7CrossRef
72.
Zurück zum Zitat Qin T et al (2017) Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31:210–217 Qin T et al (2017) Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31:210–217
73.
Zurück zum Zitat Cai L, Liang L, Wu J, Ding B, Gao L, Fan B (2017) Large area perovskite solar cell module. J Semicond 38(1):14006CrossRef Cai L, Liang L, Wu J, Ding B, Gao L, Fan B (2017) Large area perovskite solar cell module. J Semicond 38(1):14006CrossRef
74.
Zurück zum Zitat Lee JW, Na SI, Kim SS (2017) Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J Power Sources 339:33–40CrossRef Lee JW, Na SI, Kim SS (2017) Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J Power Sources 339:33–40CrossRef
75.
Zurück zum Zitat Kim S, Na S, Kang S, Kim D (2010) Solar energy materials & solar cells annealing-free fabrication of P3HT: PCBM solar cells via simple brush painting. Sol Energy Mater Sol Cells 94(2):171–175CrossRef Kim S, Na S, Kang S, Kim D (2010) Solar energy materials & solar cells annealing-free fabrication of P3HT: PCBM solar cells via simple brush painting. Sol Energy Mater Sol Cells 94(2):171–175CrossRef
76.
Zurück zum Zitat Kim SS, Na SI, Jo J, Tae G, Kim DY (2007) Efficient polymer solar cells fabricated by simple brush painting. Adv Mater 19(24):4410–4415CrossRef Kim SS, Na SI, Jo J, Tae G, Kim DY (2007) Efficient polymer solar cells fabricated by simple brush painting. Adv Mater 19(24):4410–4415CrossRef
77.
Zurück zum Zitat Chen H, Wei Z, Zheng X, Yang S (2015) A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15:216–226CrossRef Chen H, Wei Z, Zheng X, Yang S (2015) A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15:216–226CrossRef
78.
Zurück zum Zitat Huang J et al (2015) Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci Rep 5(1):15889CrossRef Huang J et al (2015) Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci Rep 5(1):15889CrossRef
79.
Zurück zum Zitat Su T-S, Hsieh T-Y, Hong C-Y, Wei T-C (2015) Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Sci Rep 5(1):16098CrossRef Su T-S, Hsieh T-Y, Hong C-Y, Wei T-C (2015) Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Sci Rep 5(1):16098CrossRef
80.
Zurück zum Zitat Koza JA, Hill JC, Demster AC, Switzer JA (2016) Epitaxial electrodeposition of methylammonium lead iodide perovskites. Chem Mater 28(1):399–405CrossRef Koza JA, Hill JC, Demster AC, Switzer JA (2016) Epitaxial electrodeposition of methylammonium lead iodide perovskites. Chem Mater 28(1):399–405CrossRef
81.
Zurück zum Zitat Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22(6):673–685CrossRef Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22(6):673–685CrossRef
82.
Zurück zum Zitat Jiang Z, Bag M, Renna L, Jeong SP, Rotello V, Venkataraman D (2016) Aqueous-processed perovskite solar cells based on reactive inkjet printing. Hal, p hal-01386295 Jiang Z, Bag M, Renna L, Jeong SP, Rotello V, Venkataraman D (2016) Aqueous-processed perovskite solar cells based on reactive inkjet printing. Hal, p hal-01386295
83.
Zurück zum Zitat Tavakoli MM et al (2015) Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci Rep 5(1):14083CrossRef Tavakoli MM et al (2015) Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci Rep 5(1):14083CrossRef
84.
Zurück zum Zitat Chen Q et al (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136(2):622–625CrossRef Chen Q et al (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136(2):622–625CrossRef
85.
Zurück zum Zitat Chen CW, Kang HW, Hsiao SY, PF Yang, Chiang KM, Lin HW (2014) Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv Mater 6647–6652 Chen CW, Kang HW, Hsiao SY, PF Yang, Chiang KM, Lin HW (2014) Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv Mater 6647–6652
86.
Zurück zum Zitat Li M-H, Shen P-S, Chen J-S, Chiang Y-H, Chen P, Guo T-F (2016) Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module. 2016 23rd international workshop on act flatpanel displays devices, pp 256–257 Li M-H, Shen P-S, Chen J-S, Chiang Y-H, Chen P, Guo T-F (2016) Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module. 2016 23rd international workshop on act flatpanel displays devices, pp 256–257
87.
Zurück zum Zitat Shen PS, Chen JS, Chiang YH, Li MH, Guo TF, Chen P (2016) Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module. Adv Mater Interfaces 3(8):1–8CrossRef Shen PS, Chen JS, Chiang YH, Li MH, Guo TF, Chen P (2016) Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module. Adv Mater Interfaces 3(8):1–8CrossRef
88.
Zurück zum Zitat Fan P et al (2016) High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci Rep 6(1):29910CrossRef Fan P et al (2016) High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci Rep 6(1):29910CrossRef
89.
Zurück zum Zitat Ono LK, Leyden MR, Wang S, Qi Y (2016) Organometal halide perovskite thin films and solar cells by vapor deposition. J Mater Chem A 4(18):6693–6713CrossRef Ono LK, Leyden MR, Wang S, Qi Y (2016) Organometal halide perovskite thin films and solar cells by vapor deposition. J Mater Chem A 4(18):6693–6713CrossRef
90.
Zurück zum Zitat Luo P et al (2015) Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells. J Mater Chem A 3(45):22949–22959CrossRef Luo P et al (2015) Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells. J Mater Chem A 3(45):22949–22959CrossRef
91.
Zurück zum Zitat Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves. J Mater Chem A 3(23):12443–12451CrossRef Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves. J Mater Chem A 3(23):12443–12451CrossRef
92.
Zurück zum Zitat Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl Mater Interfaces 7(4):2708–2714CrossRef Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl Mater Interfaces 7(4):2708–2714CrossRef
93.
Zurück zum Zitat Zhou Z et al (2016) Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO 2 as an electron collection bilayer. RSC Adv 6(82):78585–78594CrossRef Zhou Z et al (2016) Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO 2 as an electron collection bilayer. RSC Adv 6(82):78585–78594CrossRef
94.
Zurück zum Zitat Liu C, Fan J, Zhang X, Shen Y, Yang L, Mai Y (2015) Hysteretic behavior upon light soaking in perovskite solar cells prepared via modified vapor-assisted solution process. ACS Appl Mater Interfaces 7(17):9066–9071CrossRef Liu C, Fan J, Zhang X, Shen Y, Yang L, Mai Y (2015) Hysteretic behavior upon light soaking in perovskite solar cells prepared via modified vapor-assisted solution process. ACS Appl Mater Interfaces 7(17):9066–9071CrossRef
95.
Zurück zum Zitat Sedighi R, Tajabadi F, Shahbazi S, Gholipour S, Taghavinia N (2016) Mixed-halide CH3NH3PbI3—xXx (X = Cl, Br, I) perovskites: vapor-assisted solution deposition and application as solar cell absorbers. ChemPhysChem 2382–2388 Sedighi R, Tajabadi F, Shahbazi S, Gholipour S, Taghavinia N (2016) Mixed-halide CH3NH3PbI3—xXx (X = Cl, Br, I) perovskites: vapor-assisted solution deposition and application as solar cell absorbers. ChemPhysChem 2382–2388
96.
Zurück zum Zitat Peng Y, Jing G, Cui T (2015) A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells. J. Mater Chem A 3(23):12436–12442CrossRef Peng Y, Jing G, Cui T (2015) A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells. J. Mater Chem A 3(23):12436–12442CrossRef
97.
Zurück zum Zitat Sheng R et al (2015) Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J Phys Chem C 119(7):3545–3549CrossRef Sheng R et al (2015) Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J Phys Chem C 119(7):3545–3549CrossRef
98.
Zurück zum Zitat Du T, Wang N, Chen H, Lin H, He H (2015) Comparative study of vapor- and solution-crystallized perovskite for planar heterojunction solar cells. ACS Appl Mater Interfaces 7(5):3382–3388CrossRef Du T, Wang N, Chen H, Lin H, He H (2015) Comparative study of vapor- and solution-crystallized perovskite for planar heterojunction solar cells. ACS Appl Mater Interfaces 7(5):3382–3388CrossRef
99.
Zurück zum Zitat Yang Z et al (2017) Research progress on large-area perovskite thinfilms and solar modules. J Materiomics 1–14 Yang Z et al (2017) Research progress on large-area perovskite thinfilms and solar modules. J Materiomics 1–14
Metadaten
Titel
Manufacturing Techniques of Perovskite Solar Cells
verfasst von
Priyanka Kajal
Kunal Ghosh
Satvasheel Powar
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7206-2_16