Skip to main content
Erschienen in: Experiments in Fluids 6/2015

01.06.2015 | Research Article

Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV

verfasst von: Daniel Schmeling, Johannes Bosbach, Claus Wagner

Erschienen in: Experiments in Fluids | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamics of thermal plumes and their abundance is investigated in mixed convection in a cuboidal sample with respect to the characteristic numbers. The parameter range spans \(Ra=1.0{-}3.2\times 10^8\), \(Re=0.5{-}1.7\times 10^4\) and \(Ar=1.1{-}7.6\). Combined particle image thermography and particle image velocimetry is conducted in a horizontal layer close above the bottom thermal boundary layer. This combination of measurement techniques, using thermochromic liquid crystals as tracer particles, which is novel for air flows, allows for simultaneous measurement of temperature and velocity fields. Details of the measurement technique are published in Schmeling et al. (Meas Sci Technol 25:035302, 2014). The fingerprints of sheet-like plumes and those of the stems of mushroom-like plumes are visible in the instantaneous temperature fields. A study of temperature PDFs reveals that the distributions can be well described by a sum of two Gaussian distributions. Analysing the ratio of the probabilities \(P_2/P_1\) reveals a sudden change at a critical Ra c  ≈ 2.3 × 108. Here, \(P_1\) denotes the abundance of fluid temperatures imprinted by the bulk flow, while \(P_2\) represses the abundance of temperatures ascribed to warm thermal plumes. Accordingly, \(P_2/P_1\) is a measure for the plume fraction in the measurement plane. The change occurs in the \(Ar\) regime \(2.7\,\lesssim\, Ar\,\lesssim\, 3.3\), in which the interaction of buoyancy-induced large-scale circulations with the wall jet of the incoming air results in an instability reported already by Schmeling et al. (Exp Fluids 54:1517, 2013). A combined evaluation of the temperature and velocity fields reveals a change in the horizontal heat fluxes at \(Ar\approx 2.7{-}3\). Furthermore, the total amount of heat transported in x direction within the measurement layer increases with \(Ra\) in bulk-dominated regions, while it stays almost constant for plume-dominated ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahlers G, Grossmann S, Lohse D (2009) Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev Mod Phys 81:503–537CrossRef Ahlers G, Grossmann S, Lohse D (2009) Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev Mod Phys 81:503–537CrossRef
Zurück zum Zitat Baskaya S, Erturhan U, Sivrioglu M (2005) Experimental investigation of mixed convection from an array of discrete heat sources at the bottom of a horizontal channel. Int J Heat Mass Transf 42:56–63CrossRef Baskaya S, Erturhan U, Sivrioglu M (2005) Experimental investigation of mixed convection from an array of discrete heat sources at the bottom of a horizontal channel. Int J Heat Mass Transf 42:56–63CrossRef
Zurück zum Zitat Batchelor G (1959) The theory of homogeneous turbulence, 1st edn. Cambridge University Press, Cambridge Batchelor G (1959) The theory of homogeneous turbulence, 1st edn. Cambridge University Press, Cambridge
Zurück zum Zitat Bednarz T, Lei C, Patterson J (2009) An experimental study of unsteady natural convection in a reservoir model subject to periodic thermal forcing using combined PIV and PIT techniques. Exp Fluids 47:107–117CrossRef Bednarz T, Lei C, Patterson J (2009) An experimental study of unsteady natural convection in a reservoir model subject to periodic thermal forcing using combined PIV and PIT techniques. Exp Fluids 47:107–117CrossRef
Zurück zum Zitat Bosbach J, Weiss S, Ahlers G (2012) Plume fragmentation by bulk interactions in turbulent Rayleigh–Bénard convection. Phys Rev Lett 108:054501CrossRef Bosbach J, Weiss S, Ahlers G (2012) Plume fragmentation by bulk interactions in turbulent Rayleigh–Bénard convection. Phys Rev Lett 108:054501CrossRef
Zurück zum Zitat Chillà F, Schumacher J (2009) New perspectives in turbulent Rayleigh–Bénard convection. Eur Phys J E 35:58CrossRef Chillà F, Schumacher J (2009) New perspectives in turbulent Rayleigh–Bénard convection. Eur Phys J E 35:58CrossRef
Zurück zum Zitat Czapp M (2007) Simultane Messung instantaner Geschwindigkeits- und Temperaturfelder von Rayleigh–Bénard-Konvektion. Diploma thesis, Georg-August-University, Göttingen, Germany Czapp M (2007) Simultane Messung instantaner Geschwindigkeits- und Temperaturfelder von Rayleigh–Bénard-Konvektion. Diploma thesis, Georg-August-University, Göttingen, Germany
Zurück zum Zitat Dabiri D (2009) Digital particle image thermography/velocimetry: a review. Exp Fluids 46:191–241CrossRef Dabiri D (2009) Digital particle image thermography/velocimetry: a review. Exp Fluids 46:191–241CrossRef
Zurück zum Zitat Davies G (1977) Whole-mantle convection and plate tectonics. Geophys J R Astr Soc 49:459–486CrossRef Davies G (1977) Whole-mantle convection and plate tectonics. Geophys J R Astr Soc 49:459–486CrossRef
Zurück zum Zitat de Bruyn J, Bodenschatz E, Morris S, Trainoff S, Hu Y, Cannell D, Ahlers G (1996) Apparatus for the study of Rayleigh–Bénard convection in gases under pressure. Rev Sci Instrum 67:2043CrossRef de Bruyn J, Bodenschatz E, Morris S, Trainoff S, Hu Y, Cannell D, Ahlers G (1996) Apparatus for the study of Rayleigh–Bénard convection in gases under pressure. Rev Sci Instrum 67:2043CrossRef
Zurück zum Zitat Emran M, Schuhmacher J (2012) Conditional statistics of thermal dissipation rate in turbulent Rayleigh–Bénard convection. Eur Phys J E 35:108CrossRef Emran M, Schuhmacher J (2012) Conditional statistics of thermal dissipation rate in turbulent Rayleigh–Bénard convection. Eur Phys J E 35:108CrossRef
Zurück zum Zitat Fujisawa N, Funatani S, Katoh N (2005) Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh–Bénard convection. Exp Fluids 38:291–303CrossRef Fujisawa N, Funatani S, Katoh N (2005) Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh–Bénard convection. Exp Fluids 38:291–303CrossRef
Zurück zum Zitat Geoghegan P, Buchmann N, Soria J, Jermy M (2012) High-speed led-illuminated piv measurements of the time-dependent flow field in a stenosed, compliant arterial mode. In: 16th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal Geoghegan P, Buchmann N, Soria J, Jermy M (2012) High-speed led-illuminated piv measurements of the time-dependent flow field in a stenosed, compliant arterial mode. In: 16th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal
Zurück zum Zitat Haramina T, Tilgner A (2004) Coherent structures in boundary layers of Rayleigh–Bénard convection. Phys Rev E 69:056306CrossRef Haramina T, Tilgner A (2004) Coherent structures in boundary layers of Rayleigh–Bénard convection. Phys Rev E 69:056306CrossRef
Zurück zum Zitat Hiller W, Kowalewski T (1986) Simultaneous measurement of temperature and velocity fields in thermal convective flows. In: 4th international symposium on flow visualization, Paris, France Hiller W, Kowalewski T (1986) Simultaneous measurement of temperature and velocity fields in thermal convective flows. In: 4th international symposium on flow visualization, Paris, France
Zurück zum Zitat Hiller W, Koch S, Kowalewski T, Stella F (1993) Onset of natural convection in a cube. Int J Heat Mass Transf 36:3251–3263CrossRef Hiller W, Koch S, Kowalewski T, Stella F (1993) Onset of natural convection in a cube. Int J Heat Mass Transf 36:3251–3263CrossRef
Zurück zum Zitat Kaczorowski M, Wagner C (2009) Analysis of the thermal plumes in turbulent Rayleigh–Bénard convection based on well-resolved numerical simulations. J Fluid Mech 618:89–112MATHCrossRef Kaczorowski M, Wagner C (2009) Analysis of the thermal plumes in turbulent Rayleigh–Bénard convection based on well-resolved numerical simulations. J Fluid Mech 618:89–112MATHCrossRef
Zurück zum Zitat Kühn M, Ehrenfried K, Bosbach J, Wagner C (2012) Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version. Exp Fluids 53:91–103CrossRef Kühn M, Ehrenfried K, Bosbach J, Wagner C (2012) Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version. Exp Fluids 53:91–103CrossRef
Zurück zum Zitat Linden P (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238CrossRef Linden P (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238CrossRef
Zurück zum Zitat Lohse D, Xia KQ (2009) Small-scale properties of turbulent Rayleigh–Bénard convection. Annu Rev Fluid Mech 42:335–364CrossRef Lohse D, Xia KQ (2009) Small-scale properties of turbulent Rayleigh–Bénard convection. Annu Rev Fluid Mech 42:335–364CrossRef
Zurück zum Zitat Puthenveettil B, Gunasegarane G, Agrawal Y, Schmeling D, Bosbach J, Arakeri J (2011) Length of near-wall plumes in turbulent convection. J Fluid Mech 685:335–364MATHCrossRef Puthenveettil B, Gunasegarane G, Agrawal Y, Schmeling D, Bosbach J, Arakeri J (2011) Length of near-wall plumes in turbulent convection. J Fluid Mech 685:335–364MATHCrossRef
Zurück zum Zitat Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry—a practical guide, 2nd edn. Springer, Berlin Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry—a practical guide, 2nd edn. Springer, Berlin
Zurück zum Zitat Schmeling D, Czapp M, Bosbach J, Wagner C (2010) Development of combined particle image velocimetry and particle image thermography for air flows. In: 14th international heat transfer conference, vol 4. ASME, Washington, pp 57–64 Schmeling D, Czapp M, Bosbach J, Wagner C (2010) Development of combined particle image velocimetry and particle image thermography for air flows. In: 14th international heat transfer conference, vol 4. ASME, Washington, pp 57–64
Zurück zum Zitat Schmeling D, Westhoff A, Kühn M, Bosbach J, Wagner C (2011) Large-scale flow structures and heat transport of turbulent forced and mixed convection in a closed rectangular cavity. Int J Heat Fluid Flow 32:889–900CrossRef Schmeling D, Westhoff A, Kühn M, Bosbach J, Wagner C (2011) Large-scale flow structures and heat transport of turbulent forced and mixed convection in a closed rectangular cavity. Int J Heat Fluid Flow 32:889–900CrossRef
Zurück zum Zitat Schmeling D, Bosbach J, Wagner C (2013) Oscillations of the large-scale circulation in turbulent mixed convection in a closed rectangular cavity. Exp Fluids 54:1517CrossRef Schmeling D, Bosbach J, Wagner C (2013) Oscillations of the large-scale circulation in turbulent mixed convection in a closed rectangular cavity. Exp Fluids 54:1517CrossRef
Zurück zum Zitat Schmeling D, Bosbach J, Wagner C (2014) Simultaneous measurement of temperature and velocity fields in convective air flows. Meas Sci Technol 25:035302CrossRef Schmeling D, Bosbach J, Wagner C (2014) Simultaneous measurement of temperature and velocity fields in convective air flows. Meas Sci Technol 25:035302CrossRef
Zurück zum Zitat Shang X-D, Qiu PTX-L, Xia KQ (2007) Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys Fluids 19:085107CrossRef Shang X-D, Qiu PTX-L, Xia KQ (2007) Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys Fluids 19:085107CrossRef
Zurück zum Zitat Shishkina O, Wagner C (2008) Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J Fluid Mech 599:383–404MATHMathSciNet Shishkina O, Wagner C (2008) Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J Fluid Mech 599:383–404MATHMathSciNet
Zurück zum Zitat Sillekens J, Rindt C, Steenhoven AV (1998) Developing mixed convection in a coiled heat exchanger. Int J Heat Mass Transf 41:61–72MATHCrossRef Sillekens J, Rindt C, Steenhoven AV (1998) Developing mixed convection in a coiled heat exchanger. Int J Heat Mass Transf 41:61–72MATHCrossRef
Zurück zum Zitat Smith C, Sabatino D, Praisner T (2001) Temperature sensing with thermochromic liquid crystals. Exp Fluids 30:190–201CrossRef Smith C, Sabatino D, Praisner T (2001) Temperature sensing with thermochromic liquid crystals. Exp Fluids 30:190–201CrossRef
Zurück zum Zitat Stevens R, van der Poel E, Grossmann S, Lohse D (2013) The unifying theory of scaling in thermal convection: the updated prefactors. J Fluid Mech 730:295–308MATHCrossRef Stevens R, van der Poel E, Grossmann S, Lohse D (2013) The unifying theory of scaling in thermal convection: the updated prefactors. J Fluid Mech 730:295–308MATHCrossRef
Zurück zum Zitat Tropea C, Foss J, Yarin A (2007) Handbook of experimental fluid mechanics. Springer, BerlinCrossRef Tropea C, Foss J, Yarin A (2007) Handbook of experimental fluid mechanics. Springer, BerlinCrossRef
Zurück zum Zitat Wagner S, Shishkina O, Wagner C (2012) Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J Fluid Mech 697:336–366MATHCrossRef Wagner S, Shishkina O, Wagner C (2012) Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J Fluid Mech 697:336–366MATHCrossRef
Zurück zum Zitat Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21:1–11CrossRef Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21:1–11CrossRef
Zurück zum Zitat Xi HD, Lam S, Xia KQ (2004) From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J Fluid Mech 503:47–56MATHCrossRef Xi HD, Lam S, Xia KQ (2004) From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J Fluid Mech 503:47–56MATHCrossRef
Zurück zum Zitat Zhou Q, Xia KQ (2010) Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New J Phys 12:075006CrossRef Zhou Q, Xia KQ (2010) Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New J Phys 12:075006CrossRef
Zurück zum Zitat Zhou Q, Sun C, Xia KQ (2007) Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys Rev Lett 98:074501CrossRef Zhou Q, Sun C, Xia KQ (2007) Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys Rev Lett 98:074501CrossRef
Zurück zum Zitat Zocchi G, Moses E, Libchaber A (1990) Coherent structures in turbulent convection, an experimental study. Phys A 166:387–407CrossRef Zocchi G, Moses E, Libchaber A (1990) Coherent structures in turbulent convection, an experimental study. Phys A 166:387–407CrossRef
Metadaten
Titel
Measurements of the dynamics of thermal plumes in turbulent mixed convection based on combined PIT and PIV
verfasst von
Daniel Schmeling
Johannes Bosbach
Claus Wagner
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 6/2015
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-015-1981-z

Weitere Artikel der Ausgabe 6/2015

Experiments in Fluids 6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.