Skip to main content
Erschienen in: Journal of Materials Science 8/2020

09.12.2019 | Composites & nanocomposites

Mechanical properties and conductivity of graphene/Al-8030 composites with directional distribution of graphene

verfasst von: YuMing Guo, DanQing Yi, HuiQun Liu, Bin Wang, Bo Jiang, HaiSheng Wang

Erschienen in: Journal of Materials Science | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Composites of graphene nanoplatelets (GNPs) and 8030 aluminum alloy powder were prepared using powder modification + semisolid extrusion processes. The density, electrical conductivity, mechanical properties and microstructure of the specimens were investigated. The results show that the composites with 0.5 wt% GNPs achieved an enhancement in yield strength (37.5%) and ultimate tensile strength (62.9%), while its elongation and electrical conductivity were comparable, as compared with the 8030 aluminum alloy without GNPs prepared by the same process. Furthermore, the related strengthening mechanism of the composites with GNPs directional distribution was discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kong XX, Zhang H, Ji XK (2014) Microstructures and mechanical properties evolution of an Al–Fe–Cu alloy processed by repetitive continuous extrusion forming. Mater Sci Eng A 612:131–139CrossRef Kong XX, Zhang H, Ji XK (2014) Microstructures and mechanical properties evolution of an Al–Fe–Cu alloy processed by repetitive continuous extrusion forming. Mater Sci Eng A 612:131–139CrossRef
2.
Zurück zum Zitat Zhang XY, Zhang H, Kong XX, Fu DF (2015) Microstructure and properties of Al–0.70Fe–0.24Cu alloy conductor prepared by horizontal continuous casting and subsequent continuous extrusion forming. Trans Nonferr Met Soc China 25:1763–1769CrossRef Zhang XY, Zhang H, Kong XX, Fu DF (2015) Microstructure and properties of Al–0.70Fe–0.24Cu alloy conductor prepared by horizontal continuous casting and subsequent continuous extrusion forming. Trans Nonferr Met Soc China 25:1763–1769CrossRef
3.
Zurück zum Zitat Zhang JY, Jiang XY, Ma MY, Jiang B, Wang B, Yi DQ (2017) Effect of scandium micro-alloying on the creep resistance properties of Al-0.7 Fe alloy cables. Mater Sci Eng A 699:194–200CrossRef Zhang JY, Jiang XY, Ma MY, Jiang B, Wang B, Yi DQ (2017) Effect of scandium micro-alloying on the creep resistance properties of Al-0.7 Fe alloy cables. Mater Sci Eng A 699:194–200CrossRef
4.
Zurück zum Zitat Zhang JY, Wang HX, Yi DQ, Wang B, Wang HS (2018) Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2 Zr-based alloy cables. Mater Charact 145:126–134CrossRef Zhang JY, Wang HX, Yi DQ, Wang B, Wang HS (2018) Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2 Zr-based alloy cables. Mater Charact 145:126–134CrossRef
5.
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRef Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRef
6.
Zurück zum Zitat Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
7.
Zurück zum Zitat Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
8.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. 8:902–907CrossRef
9.
Zurück zum Zitat Yan SJ, Dai SL, Zhang XY, Yang C, Hong QH, Chen JZ, Lin ZM (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A 612:440–444CrossRef Yan SJ, Dai SL, Zhang XY, Yang C, Hong QH, Chen JZ, Lin ZM (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A 612:440–444CrossRef
10.
Zurück zum Zitat Rashad M, Pan F, Tang A, Asif M (2014) Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci Mater Int 24:101–108CrossRef Rashad M, Pan F, Tang A, Asif M (2014) Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci Mater Int 24:101–108CrossRef
11.
Zurück zum Zitat Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH, Jeon S (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25:6724–6729CrossRef Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH, Jeon S (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25:6724–6729CrossRef
12.
Zurück zum Zitat Kim JW, Lee TJ, Han SH (2014) Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69:55–65CrossRef Kim JW, Lee TJ, Han SH (2014) Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69:55–65CrossRef
13.
Zurück zum Zitat Rashad M, Pan FS, Hu HH, Asif M, Hussain S, She J (2015) Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater Sci Eng A 630:36–44CrossRef Rashad M, Pan FS, Hu HH, Asif M, Hussain S, She J (2015) Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater Sci Eng A 630:36–44CrossRef
14.
Zurück zum Zitat Du X, Du WB, Wang ZH, Liu K, Li SB (2018) Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater Sci Eng A 711:633–642CrossRef Du X, Du WB, Wang ZH, Liu K, Li SB (2018) Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater Sci Eng A 711:633–642CrossRef
15.
Zurück zum Zitat Li M, Gao H, Liang J, Gu S, You W, Shu D, Wang J, Sun B (2018) Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact 140:172–178CrossRef Li M, Gao H, Liang J, Gu S, You W, Shu D, Wang J, Sun B (2018) Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact 140:172–178CrossRef
16.
Zurück zum Zitat Li JL, Xiong YC, Wang XD, Yan SJ, Yang C, He WW, Chen JZ, Wang SQ et al (2015) Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng A 626:400–405CrossRef Li JL, Xiong YC, Wang XD, Yan SJ, Yang C, He WW, Chen JZ, Wang SQ et al (2015) Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng A 626:400–405CrossRef
17.
Zurück zum Zitat Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R (2014) Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloys Compd 615:578–582CrossRef Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R (2014) Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloys Compd 615:578–582CrossRef
18.
Zurück zum Zitat Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937CrossRef Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937CrossRef
19.
Zurück zum Zitat Stanford-Beale CA, Clyne TW (1989) Extrusion and high-temperature deformation of fibre-reinforced aluminium. Comps Sci Technol 35:121–157CrossRef Stanford-Beale CA, Clyne TW (1989) Extrusion and high-temperature deformation of fibre-reinforced aluminium. Comps Sci Technol 35:121–157CrossRef
20.
Zurück zum Zitat Wang JY, Li ZQ, Fan GL, Pan HH, Chen ZX, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66:594–597CrossRef Wang JY, Li ZQ, Fan GL, Pan HH, Chen ZX, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66:594–597CrossRef
21.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef
22.
Zurück zum Zitat Yan LP, Tan ZQ, Ji G, Li ZQ, Fan GL, Schryvers D, Shan A, Zhang D (2016) A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites. Mater Charact 112:213–218CrossRef Yan LP, Tan ZQ, Ji G, Li ZQ, Fan GL, Schryvers D, Shan A, Zhang D (2016) A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites. Mater Charact 112:213–218CrossRef
23.
Zurück zum Zitat Poirier D, Gauvin R, Drew RAL (2009) Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Compos A 40:1482–1489CrossRef Poirier D, Gauvin R, Drew RAL (2009) Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Compos A 40:1482–1489CrossRef
24.
Zurück zum Zitat Chen FY, Ying JM, Wang YF, Du SY, Liu ZP, Huang Q (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842CrossRef Chen FY, Ying JM, Wang YF, Du SY, Liu ZP, Huang Q (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842CrossRef
25.
Zurück zum Zitat Zhang L, Lück R (2003) Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system. III. Isothermal sections. Z Metallkd 94:108–115CrossRef Zhang L, Lück R (2003) Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system. III. Isothermal sections. Z Metallkd 94:108–115CrossRef
26.
Zurück zum Zitat Cenoz I (2010) Influence of metallic die temperature in the solidification of Cu-10% Al-2% Fe alloy. Arch Metall Mater 55:1029–1033CrossRef Cenoz I (2010) Influence of metallic die temperature in the solidification of Cu-10% Al-2% Fe alloy. Arch Metall Mater 55:1029–1033CrossRef
27.
Zurück zum Zitat Ci LJ, Ryu ZY, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRef Ci LJ, Ryu ZY, Jin-Phillipp NY, Rühle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRef
28.
Zurück zum Zitat Tian WM, Li SM, Wang B, Chen X, Liu JH, Yu M (2016) Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater 23:723–729CrossRef Tian WM, Li SM, Wang B, Chen X, Liu JH, Yu M (2016) Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater 23:723–729CrossRef
29.
Zurück zum Zitat Wang HB, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef Wang HB, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef
30.
Zurück zum Zitat Gao HY, Wang J, Shu D, Sun BD (2006) Effect of Ag on the aging characteristics of Cu–Fe in situ composites. Scr Mater 54:1931–1935CrossRef Gao HY, Wang J, Shu D, Sun BD (2006) Effect of Ag on the aging characteristics of Cu–Fe in situ composites. Scr Mater 54:1931–1935CrossRef
31.
Zurück zum Zitat Su YS, Li Z, Yu Y, Zhao L, Li ZQ, Guo Q, Xiong DB, Zhang D (2018) Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites. Sci China Mater 61:112–124CrossRef Su YS, Li Z, Yu Y, Zhao L, Li ZQ, Guo Q, Xiong DB, Zhang D (2018) Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites. Sci China Mater 61:112–124CrossRef
32.
Zurück zum Zitat Zhang HP, Xu C, Xiao WL, Ameyama K, Ma C (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng A 658:8–15CrossRef Zhang HP, Xu C, Xiao WL, Ameyama K, Ma C (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng A 658:8–15CrossRef
33.
Zurück zum Zitat Zhou WW, Fan YC, Feng XP, Kikuchi K, Nomura N, Kawasaki A (2018) Creation of individual few-layer graphene incorporated in an aluminum matrix. Compos A 112:168–177CrossRef Zhou WW, Fan YC, Feng XP, Kikuchi K, Nomura N, Kawasaki A (2018) Creation of individual few-layer graphene incorporated in an aluminum matrix. Compos A 112:168–177CrossRef
34.
Zurück zum Zitat Li JC, Zhang XX, Geng L (2018) Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Mater Des 144:159–168CrossRef Li JC, Zhang XX, Geng L (2018) Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Mater Des 144:159–168CrossRef
35.
Zurück zum Zitat Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648CrossRef Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648CrossRef
36.
Zurück zum Zitat Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
37.
Zurück zum Zitat Yuan QH, Zeng XS, Liu Y, Luo L, Wu JB, Wang YC, Zhou GH (2016) Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon 96:843–855CrossRef Yuan QH, Zeng XS, Liu Y, Luo L, Wu JB, Wang YC, Zhou GH (2016) Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon 96:843–855CrossRef
38.
Zurück zum Zitat Rashad M, Pan FS, Zhang JY, Asif M (2015) Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J Alloys Compd 646:223–232CrossRef Rashad M, Pan FS, Zhang JY, Asif M (2015) Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J Alloys Compd 646:223–232CrossRef
40.
Zurück zum Zitat Jr RMA, Christodoulou L (1991) The role of equiaxed particles on the yield stress of composites. Scr Metall Mater 25:9–14CrossRef Jr RMA, Christodoulou L (1991) The role of equiaxed particles on the yield stress of composites. Scr Metall Mater 25:9–14CrossRef
41.
Zurück zum Zitat Chu K, Wang F, Wang XH, Huang DJ (2018) Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A 713:269–277CrossRef Chu K, Wang F, Wang XH, Huang DJ (2018) Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A 713:269–277CrossRef
Metadaten
Titel
Mechanical properties and conductivity of graphene/Al-8030 composites with directional distribution of graphene
verfasst von
YuMing Guo
DanQing Yi
HuiQun Liu
Bin Wang
Bo Jiang
HaiSheng Wang
Publikationsdatum
09.12.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04017-2

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Science 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.