Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

Metal-Organic Framework Composites IPMC Sensors and Actuators

verfasst von : Bianca Maranescu, Aurelia Visa

Erschienen in: Ionic Polymer Metal Composites for Sensors and Actuators

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal-organic frameworks (MOFs), a highly studied class of complex structured porous materials, containing different types of central metal ions attached to organic linkers, are used in various applications such as catalysis, separation, absorption, photochemistry, proton conductivity, biotechnology, magnetism and sensoristic science etc. The architectural structures of MOFs provide special properties as improved thermal and mechanical stabilities, high surface areas and large pore sizes to these materials. The need for new functionalities is to take into account that the fabrication methods must be robust, scalable, friendly to environment and cost-effective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef
2.
Zurück zum Zitat Batten, R.S., Champness, N.R., O’Keeffe, M., et al.: Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 85, 1715–1724 (2013)CrossRef Batten, R.S., Champness, N.R., O’Keeffe, M., et al.: Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 85, 1715–1724 (2013)CrossRef
3.
Zurück zum Zitat Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295, 469–472 (2002)CrossRef Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295, 469–472 (2002)CrossRef
4.
Zurück zum Zitat Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRef Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRef
5.
Zurück zum Zitat Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)CrossRef Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)CrossRef
6.
Zurück zum Zitat Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., Zhou, H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRef Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., Zhou, H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRef
7.
Zurück zum Zitat Li, M., Li, D., O’Keeffe, M., Yaghi, O.M.: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014)CrossRef Li, M., Li, D., O’Keeffe, M., Yaghi, O.M.: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014)CrossRef
8.
Zurück zum Zitat Wang, C., Liu, X., Demir, N.K., Chen, J.P., Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016) Wang, C., Liu, X., Demir, N.K., Chen, J.P., Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016)
9.
Zurück zum Zitat Visa, A., Mracec, M., Maranescu, B.: Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio 6, 91 (2012) Visa, A., Mracec, M., Maranescu, B.: Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio 6, 91 (2012)
10.
Zurück zum Zitat Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., Ameloot, R.: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017)CrossRef Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., Ameloot, R.: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017)CrossRef
11.
Zurück zum Zitat Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)CrossRef Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)CrossRef
12.
Zurück zum Zitat Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef
13.
Zurück zum Zitat Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013)CrossRef Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013)CrossRef
14.
Zurück zum Zitat Colodrero, R.M.P., Cabeza, A., Olivera-Pastor, P., et al.: Divalent metal vinylphosphonate layered materials: compositional variability, structural peculiarities, dehydration behavior, and photoluminescent properties. Inorg. Chem. 50, 11202–11211 (2011) Colodrero, R.M.P., Cabeza, A., Olivera-Pastor, P., et al.: Divalent metal vinylphosphonate layered materials: compositional variability, structural peculiarities, dehydration behavior, and photoluminescent properties. Inorg. Chem. 50, 11202–11211 (2011)
15.
Zurück zum Zitat Maranescu, B., Visa, A., Ilia, G., et al.: Spectroscopic properties of new cerium metal–organic framework based on phosphonate ligands with vinyl functional group. J. Coord. Chem. 67, 1562–1572 (2014)CrossRef Maranescu, B., Visa, A., Ilia, G., et al.: Spectroscopic properties of new cerium metal–organic framework based on phosphonate ligands with vinyl functional group. J. Coord. Chem. 67, 1562–1572 (2014)CrossRef
16.
Zurück zum Zitat Horcajada, P., Gref, R., Baati, T., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRef Horcajada, P., Gref, R., Baati, T., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRef
17.
Zurück zum Zitat Ping, L.W., Bin, X., Wang, G.Y., Wu, J.: Synthesis of polycarbonate diol catalyzed by metal-organic framework Zn4O[CO2-C6H4-CO2]3. Sci. China Chem. 54, 1468–1473 (2011) Ping, L.W., Bin, X., Wang, G.Y., Wu, J.: Synthesis of polycarbonate diol catalyzed by metal-organic framework Zn4O[CO2-C6H4-CO2]3. Sci. China Chem. 54, 1468–1473 (2011)
18.
Zurück zum Zitat Safarifard, V., Morsali, A.: Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev. 292, 1–14 (2015)CrossRef Safarifard, V., Morsali, A.: Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev. 292, 1–14 (2015)CrossRef
19.
Zurück zum Zitat Safarifard, V., Morsali, A.: Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem. 19, 300–306 (2012)CrossRef Safarifard, V., Morsali, A.: Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem. 19, 300–306 (2012)CrossRef
20.
Zurück zum Zitat Abbasi, A.R., Noori, N., Azadbakht, A., Bafarani, M.: Dense coating of surface mounted Cu2O nanoparticles upon silk fibers under ultrasound irradiation with antibacterial activity. J. Iran. Chem. Soc. 13, 1273–1281 (2016)CrossRef Abbasi, A.R., Noori, N., Azadbakht, A., Bafarani, M.: Dense coating of surface mounted Cu2O nanoparticles upon silk fibers under ultrasound irradiation with antibacterial activity. J. Iran. Chem. Soc. 13, 1273–1281 (2016)CrossRef
21.
Zurück zum Zitat Ranjbar, M., Nabitabar, M., Çelik, Ö., Yousefi, M.: Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J. Iran. Chem. Soc. 12, 551–559 (2015) Ranjbar, M., Nabitabar, M., Çelik, Ö., Yousefi, M.: Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J. Iran. Chem. Soc. 12, 551–559 (2015)
22.
Zurück zum Zitat James, S.L., Adams, C.J., Bolm, C., et al.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)CrossRef James, S.L., Adams, C.J., Bolm, C., et al.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)CrossRef
23.
Zurück zum Zitat Sakamoto, H., Matsuda, R., Kitagawa, S.: Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans. 41, 3956–3961 (2012)CrossRef Sakamoto, H., Matsuda, R., Kitagawa, S.: Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans. 41, 3956–3961 (2012)CrossRef
24.
Zurück zum Zitat Lv, D., Chen, Y., Li, Y., et al.: Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)CrossRef Lv, D., Chen, Y., Li, Y., et al.: Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)CrossRef
25.
Zurück zum Zitat Chen, Y., Wu, H., Liu, Z.: Liquid-assisted mechanochemical synthesis of copper based mof-505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res. 57, 703–709 (2018)CrossRef Chen, Y., Wu, H., Liu, Z.: Liquid-assisted mechanochemical synthesis of copper based mof-505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res. 57, 703–709 (2018)CrossRef
26.
Zurück zum Zitat Chen, Y., Xiao, J., Lv, D., et al.: Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chem. Eng. Sci. 158, 539–544 (2017)CrossRef Chen, Y., Xiao, J., Lv, D., et al.: Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chem. Eng. Sci. 158, 539–544 (2017)CrossRef
27.
Zurück zum Zitat Hashemi, L., Morsali, A.: Microwave assisted synthesis of a new lead(II) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. Cryst. Eng. Comm. 14, 779–781 (2012)CrossRef Hashemi, L., Morsali, A.: Microwave assisted synthesis of a new lead(II) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. Cryst. Eng. Comm. 14, 779–781 (2012)CrossRef
28.
Zurück zum Zitat Ni, Z., Masel, R.I.: Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)CrossRef Ni, Z., Masel, R.I.: Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)CrossRef
29.
Zurück zum Zitat Laybourn, A., Katrib, J., Ferrari-John, R.S., et al.: Metal–organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333–7338 (2017)CrossRef Laybourn, A., Katrib, J., Ferrari-John, R.S., et al.: Metal–organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333–7338 (2017)CrossRef
30.
Zurück zum Zitat Blăniţă, G., Ardelean, O., Lupu, D., et al.: Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 56, 583–588 (2011) Blăniţă, G., Ardelean, O., Lupu, D., et al.: Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 56, 583–588 (2011)
31.
Zurück zum Zitat MadhanVinu, I.D., Wei-Cheng, L., Duraisamy, S.R., et al.: Microwave-assisted synthesis of nanoporous aluminum-based coordination polymers as catalysts for selective sulfoxidation reaction. Polymers 9, 498 (2017)CrossRef MadhanVinu, I.D., Wei-Cheng, L., Duraisamy, S.R., et al.: Microwave-assisted synthesis of nanoporous aluminum-based coordination polymers as catalysts for selective sulfoxidation reaction. Polymers 9, 498 (2017)CrossRef
32.
Zurück zum Zitat Martinez Joaristi, A., Juan-Alcaniz, J., Serra-Crespo, P., et al.: Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489–3498 (2012)CrossRef Martinez Joaristi, A., Juan-Alcaniz, J., Serra-Crespo, P., et al.: Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489–3498 (2012)CrossRef
33.
Zurück zum Zitat Mueller, U., Schubert, M., Teich, F., et al.: Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)CrossRef Mueller, U., Schubert, M., Teich, F., et al.: Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)CrossRef
34.
Zurück zum Zitat Yang, H., Liu, X., Song, X., et al.: In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBrTrans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRef Yang, H., Liu, X., Song, X., et al.: In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBrTrans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRef
35.
Zurück zum Zitat Al-Kutubi, H., Gascon, J., Sudholter, E.J., Rassaei, L.: Electrosynthesis of metal–organic frameworks: challenges and opportunities. Chem. Electro. Chem. 2, 462–474 (2015) Al-Kutubi, H., Gascon, J., Sudholter, E.J., Rassaei, L.: Electrosynthesis of metal–organic frameworks: challenges and opportunities. Chem. Electro. Chem. 2, 462–474 (2015)
36.
Zurück zum Zitat Pirzadeh, K., Ghoreyshi, A.A., Rahimnejad, M., Mohammadi, M.: Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean J. Chem. Eng. 35, 974–983 (2018)CrossRef Pirzadeh, K., Ghoreyshi, A.A., Rahimnejad, M., Mohammadi, M.: Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean J. Chem. Eng. 35, 974–983 (2018)CrossRef
37.
Zurück zum Zitat Leigh, D.A.: Genesis of the nanomachines: the 2016 nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016)CrossRef Leigh, D.A.: Genesis of the nanomachines: the 2016 nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016)CrossRef
38.
Zurück zum Zitat Le Bailly, B.: Nobel prize in chemistry: welcome to the machine. Nat. Nanotechnol. 11, 923–927 (2016)CrossRef Le Bailly, B.: Nobel prize in chemistry: welcome to the machine. Nat. Nanotechnol. 11, 923–927 (2016)CrossRef
39.
Zurück zum Zitat Balzani, V., Credi, A., Venturi M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009)CrossRef Balzani, V., Credi, A., Venturi M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009)CrossRef
40.
Zurück zum Zitat Abendroth, J.M., Bushuyev, O.S., Weiss, P.S., Barrett, C.J.: Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015)CrossRef Abendroth, J.M., Bushuyev, O.S., Weiss, P.S., Barrett, C.J.: Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015)CrossRef
41.
Zurück zum Zitat Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)CrossRef Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)CrossRef
42.
Zurück zum Zitat Jiang, X., Duan, H.B., Kahn, S.I., Garcia-Garibay, M.A.: Diffusion-controlled rotation of triptycene in a metal−organic framework (MOF) sheds light on the viscosity of MOF-confined solvent. ACS Cent. Sci. 2(9), 608–613 (2016)CrossRef Jiang, X., Duan, H.B., Kahn, S.I., Garcia-Garibay, M.A.: Diffusion-controlled rotation of triptycene in a metal−organic framework (MOF) sheds light on the viscosity of MOF-confined solvent. ACS Cent. Sci. 2(9), 608–613 (2016)CrossRef
43.
Zurück zum Zitat Vogelsberga, C.S., Uribe-Romob, F.J., Liptonc, A.S., et al.: Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl. Acad. Sci. U.S.A. 114(52), 13613–13618 (2017)CrossRef Vogelsberga, C.S., Uribe-Romob, F.J., Liptonc, A.S., et al.: Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl. Acad. Sci. U.S.A. 114(52), 13613–13618 (2017)CrossRef
44.
Zurück zum Zitat Li, J., Yu, X., Xu, M., Liu, W., Sandraz, E., Lan, H., Wang, J., Cohen, S.M.: Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017)CrossRef Li, J., Yu, X., Xu, M., Liu, W., Sandraz, E., Lan, H., Wang, J., Cohen, S.M.: Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017)CrossRef
45.
Zurück zum Zitat Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., Matsui, H.: Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012)CrossRef Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., Matsui, H.: Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012)CrossRef
46.
Zurück zum Zitat Lu, Y., Yan, B.: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium (III) complexes. Chem. Commun. 50, 13323–13326 (2014)CrossRef Lu, Y., Yan, B.: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium (III) complexes. Chem. Commun. 50, 13323–13326 (2014)CrossRef
47.
Zurück zum Zitat Della Rocca, J., Liu, D.M., Lin, W.B.: Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011)CrossRef Della Rocca, J., Liu, D.M., Lin, W.B.: Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011)CrossRef
48.
Zurück zum Zitat Lu, Y., Yan, B.: An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Trans. 45, 7078–7084 (2016)CrossRef Lu, Y., Yan, B.: An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Trans. 45, 7078–7084 (2016)CrossRef
49.
Zurück zum Zitat Xing, K., Fan, R., Wang, F., Nie, H., Du, X., Gai, S., Wang, P., Yang, Y.: Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b06270 Xing, K., Fan, R., Wang, F., Nie, H., Du, X., Gai, S., Wang, P., Yang, Y.: Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl. Mater. Interfaces (2018). https://​doi.​org/​10.​1021/​acsami.​8b06270
50.
Zurück zum Zitat Harbuzaru, B.V., Corma, A., Rey, F., Jordá, J.L., Ananias, D., Carlos, L.D., Rocha, J.: A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angew. Chem. Int. Ed. 48, 6476–6479 (2009)CrossRef Harbuzaru, B.V., Corma, A., Rey, F., Jordá, J.L., Ananias, D., Carlos, L.D., Rocha, J.: A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angew. Chem. Int. Ed. 48, 6476–6479 (2009)CrossRef
51.
Zurück zum Zitat Meng, Q., Xin, X., Zhang, L., Dai, F., Wang, R., Sun, D.: A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 3, 24016–24021 (2015)CrossRef Meng, Q., Xin, X., Zhang, L., Dai, F., Wang, R., Sun, D.: A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 3, 24016–24021 (2015)CrossRef
53.
Zurück zum Zitat Aguilera-Sigalat, J., Bradshaw, D.: A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chem. Commun. 50, 4711–4713 (2014)CrossRef Aguilera-Sigalat, J., Bradshaw, D.: A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chem. Commun. 50, 4711–4713 (2014)CrossRef
54.
Zurück zum Zitat He, C., Lu, K., Lin, W.: Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136(35), 12253–12256 (2014)CrossRef He, C., Lu, K., Lin, W.: Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136(35), 12253–12256 (2014)CrossRef
55.
Zurück zum Zitat Deibert, B.J., Li, J.: A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem. Commun. 50, 9636–9639 (2014)CrossRef Deibert, B.J., Li, J.: A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem. Commun. 50, 9636–9639 (2014)CrossRef
56.
Zurück zum Zitat Bloch, E.D., Britt, D., Cl, Lee, et al.: Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010)CrossRef Bloch, E.D., Britt, D., Cl, Lee, et al.: Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010)CrossRef
57.
Zurück zum Zitat Yi, F.Y., Chen, D., Wu, M.K., Han, L., Jiang, H.L.: Chemical sensors based on metal–organic frameworks. Chem Plus Chem 81, 1–17 (2016) Yi, F.Y., Chen, D., Wu, M.K., Han, L., Jiang, H.L.: Chemical sensors based on metal–organic frameworks. Chem Plus Chem 81, 1–17 (2016)
58.
Zurück zum Zitat Qi, X.L., Lin, R.B., Chen, Q., Lin, J.B., Zhang, J.P., Chen, X.M.: A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem. Sci. 2, 2214–2218 (2011) Qi, X.L., Lin, R.B., Chen, Q., Lin, J.B., Zhang, J.P., Chen, X.M.: A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem. Sci. 2, 2214–2218 (2011)
59.
Zurück zum Zitat Xiao, J., Wu, Y., Li, M., Liu, B.Y., Huang, X.C., Li, D.: Crystalline structural intermediates of a breathing metal–organic framework that functions as a luminescent sensor and gas reservoir. Chem. Eur. J. 19, 1891–1895 (2013)CrossRef Xiao, J., Wu, Y., Li, M., Liu, B.Y., Huang, X.C., Li, D.: Crystalline structural intermediates of a breathing metal–organic framework that functions as a luminescent sensor and gas reservoir. Chem. Eur. J. 19, 1891–1895 (2013)CrossRef
60.
Zurück zum Zitat Zhang, M., Feng, G., Song, Z., Zhou, Y.P., et al.: Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014)CrossRef Zhang, M., Feng, G., Song, Z., Zhou, Y.P., et al.: Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014)CrossRef
61.
Zurück zum Zitat Jin, Z., He, H., Zhao, H.: A luminescent metal–organic framework for sensing methanol in ethanol solution. Dalton Trans. 42, 13335–13338 (2013)CrossRef Jin, Z., He, H., Zhao, H.: A luminescent metal–organic framework for sensing methanol in ethanol solution. Dalton Trans. 42, 13335–13338 (2013)CrossRef
62.
Zurück zum Zitat Wang, N.H., Jiang, S.Q., Lu, Q.Y., Zhou, Z.Y., et al.: A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Adv. 5, 48881–48884 (2015)CrossRef Wang, N.H., Jiang, S.Q., Lu, Q.Y., Zhou, Z.Y., et al.: A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Adv. 5, 48881–48884 (2015)CrossRef
63.
Zurück zum Zitat Wang, D., Zhang, L., Li, G., Huo, Q., Liu, Y.: Luminescent MOF material based on cadmium(II) and mixed ligands: application for sensing volatile organic solvent molecules. RSC Adv. 5, 18087–18091 (2015)CrossRef Wang, D., Zhang, L., Li, G., Huo, Q., Liu, Y.: Luminescent MOF material based on cadmium(II) and mixed ligands: application for sensing volatile organic solvent molecules. RSC Adv. 5, 18087–18091 (2015)CrossRef
64.
Zurück zum Zitat Wu, P., Liu, Y., Li, Y., Jiang, M., Li, X.I., Shia, Y., Wang, J.: Cadmium(II)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A 4, 16349–16355 (2016)CrossRef Wu, P., Liu, Y., Li, Y., Jiang, M., Li, X.I., Shia, Y., Wang, J.: Cadmium(II)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A 4, 16349–16355 (2016)CrossRef
65.
Zurück zum Zitat Müller, P., Wisser, F.M., Bon, V., Grünker, R., Senkovska, I., Kaskela, S.: Post-synthetic paddle-wheel crosslinking and functionalization of 1,3-phenylenebis(azanetriyl)tetrabenzoate based MOFs. Chem. Mater. 27, 2460–2467 (2015)CrossRef Müller, P., Wisser, F.M., Bon, V., Grünker, R., Senkovska, I., Kaskela, S.: Post-synthetic paddle-wheel crosslinking and functionalization of 1,3-phenylenebis(azanetriyl)tetrabenzoate based MOFs. Chem. Mater. 27, 2460–2467 (2015)CrossRef
66.
Zurück zum Zitat Yi, F.Y., Chen, J., Wang, S.C., Gu, M., Han, L.: A heterobimetallic metal-organic framework as “turn-on” sensor toward DMF. Chem. Commun. 54, 8233–8236 (2018) Yi, F.Y., Chen, J., Wang, S.C., Gu, M., Han, L.: A heterobimetallic metal-organic framework as “turn-on” sensor toward DMF. Chem. Commun. 54, 8233–8236 (2018)
67.
Zurück zum Zitat Yamazoe, N., Shimizu, Y.: Humidity sensors: principles and applications. Sens. Actuators 10, 379–398 (1986)CrossRef Yamazoe, N., Shimizu, Y.: Humidity sensors: principles and applications. Sens. Actuators 10, 379–398 (1986)CrossRef
68.
Zurück zum Zitat Tetelin, A., Pellet, C., LavilleC, Kaoua G.N.: Fast response humidity sensors for a medical microsystem. Sens. Actuators B 91, 211–218 (2003)CrossRef Tetelin, A., Pellet, C., LavilleC, Kaoua G.N.: Fast response humidity sensors for a medical microsystem. Sens. Actuators B 91, 211–218 (2003)CrossRef
69.
Zurück zum Zitat Buvailo, A.I., Xing, Y., Hines, J., Dollahon, N., Borguet, E.: TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl. Mater. Interfaces 3, 528–533 (2011)CrossRef Buvailo, A.I., Xing, Y., Hines, J., Dollahon, N., Borguet, E.: TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl. Mater. Interfaces 3, 528–533 (2011)CrossRef
70.
Zurück zum Zitat Ohira, S.I., Dasgupta, P.K., Schug, K.A.: Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. Anal. Chem. 81, 4183–4191 (2009)CrossRef Ohira, S.I., Dasgupta, P.K., Schug, K.A.: Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. Anal. Chem. 81, 4183–4191 (2009)CrossRef
71.
Zurück zum Zitat Neumeier, S., Echterhof, T., Pfeifer, H., Simon, U.: Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sens. Actuators B 134, 171–175 (2008)CrossRef Neumeier, S., Echterhof, T., Pfeifer, H., Simon, U.: Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sens. Actuators B 134, 171–175 (2008)CrossRef
72.
Zurück zum Zitat Zhu, W.H., Wang, Z.M., Gao, S.: Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg. Chem. 4, 1337–1342 (2007)CrossRef Zhu, W.H., Wang, Z.M., Gao, S.: Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg. Chem. 4, 1337–1342 (2007)CrossRef
73.
Zurück zum Zitat Tiano, A.L., Koenigsmann, C., Santulli, A.C., Wong S.S.: Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 46, 8093–8130 (2010)CrossRef Tiano, A.L., Koenigsmann, C., Santulli, A.C., Wong S.S.: Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 46, 8093–8130 (2010)CrossRef
74.
Zurück zum Zitat Gao, Y., Jing, P., Yan, N., Hilbers, M., Zhang, H., Rothenberg, G., Tanase, S.: Dual-mode humidity detection using a lanthanide-based metal–organic framework: towards multifunctional humidity sensors. Chem. Commun. 53, 4465–4468 (2017)CrossRef Gao, Y., Jing, P., Yan, N., Hilbers, M., Zhang, H., Rothenberg, G., Tanase, S.: Dual-mode humidity detection using a lanthanide-based metal–organic framework: towards multifunctional humidity sensors. Chem. Commun. 53, 4465–4468 (2017)CrossRef
75.
Zurück zum Zitat Andrew, K.F., Foster, D., Richardson, F.S.: Comparison of 7FJ ← 5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry. Chem. Phys. Lett. 95, 507–511 (1983)CrossRef Andrew, K.F., Foster, D., Richardson, F.S.: Comparison of 7FJ ← 5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry. Chem. Phys. Lett. 95, 507–511 (1983)CrossRef
76.
Zurück zum Zitat Cheng, H.H., Hu, Y., Zhao, F., Dong, Z.L., Wang, Y.H., Chen, N., Zhang, Z.P., Qu, L.T.: Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014)CrossRef Cheng, H.H., Hu, Y., Zhao, F., Dong, Z.L., Wang, Y.H., Chen, N., Zhang, Z.P., Qu, L.T.: Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014)CrossRef
77.
Zurück zum Zitat Zhao, F., Wang, L.X., Zhao, Y., Qu, L.T., Dai, L.M.: Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017)CrossRef Zhao, F., Wang, L.X., Zhao, Y., Qu, L.T., Dai, L.M.: Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017)CrossRef
78.
Zurück zum Zitat Zhao, F., Cheng, H.H., Zhang, Z.P., Jiang, L., Qu, L.T.: Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015)CrossRef Zhao, F., Cheng, H.H., Zhang, Z.P., Jiang, L., Qu, L.T.: Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015)CrossRef
79.
Zurück zum Zitat Zhao, F., Liang, Y., Cheng, H.H., Jiang, L., Qu, L.T.: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016)CrossRef Zhao, F., Liang, Y., Cheng, H.H., Jiang, L., Qu, L.T.: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016)CrossRef
80.
Zurück zum Zitat Allendorf, M.D., Foster, M.E., Leonard, F., Stavila, V., Feng, P.L., Doty, F.P., Leong, K., Ma, E.Y., Johnston, S.R., Talin, A.A.: Guest-induced emergent properties in metal–organic frameworks. J. Phys. Chem. Lett. 6, 1182–1195 (2015)CrossRef Allendorf, M.D., Foster, M.E., Leonard, F., Stavila, V., Feng, P.L., Doty, F.P., Leong, K., Ma, E.Y., Johnston, S.R., Talin, A.A.: Guest-induced emergent properties in metal–organic frameworks. J. Phys. Chem. Lett. 6, 1182–1195 (2015)CrossRef
Metadaten
Titel
Metal-Organic Framework Composites IPMC Sensors and Actuators
verfasst von
Bianca Maranescu
Aurelia Visa
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13728-1_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.