Skip to main content

2014 | OriginalPaper | Buchkapitel

3. Metal-Organic Frameworks (MOFs) for CO2 Capture

verfasst von : Hui Yang, Jian-Rong Li

Erschienen in: Porous Materials for Carbon Dioxide Capture

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal-organic frameworks (MOFs) composed of metal nodes linked by organic linkers are a class of newly developed crystalline hybrid porous solids. In the past few years, MOFs have seen a very rapid development both in terms of synthesis of novel structures and their potential applications in a wide variety of fields. Nearly all metals and a large diversity of organic species can be used to construct MOFs, so that a huge variety of materials of MOFs with different structures and properties are accessible. Due to their uniform yet tunable pore sizes, high-surface areas, and easy pore functionalization, MOFs have emerged as superior porous materials for adsorption and membrane-based applications. Particularly, recent studies have demonstrated that MOFs are perfect and quite promising in CO2 capture. This chapter starts with an introduction of MOFs, including their design and synthesis, structural features, properties, and potential applications. Then, their implementation and performance in CO2 capture-related aspects including selective CO2 adsorption in MOFs, CO2 separation in MOFs, MOF-based membrane for CO2 separation, the design of MOFs for CO2 capture, and computational simulation in MOFs for CO2 capture are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge
2.
Zurück zum Zitat Rackley SA (2010) Carbon capture and storage. Elsevier, Amsterdam Rackley SA (2010) Carbon capture and storage. Elsevier, Amsterdam
3.
Zurück zum Zitat Wilson EJ, Gerard D (2007) Carbon capture and sequestration: integrating technology, monitoring, regulation. Wiley, New York Wilson EJ, Gerard D (2007) Carbon capture and sequestration: integrating technology, monitoring, regulation. Wiley, New York
4.
Zurück zum Zitat Bolhàr-Nordenkampf J (2009) Chemical looping for syngas and power generation with CO2 capture: pilot plant study and process modeling. Suedwest-deutscher Verlag fuer Hochschulschriften Bolhàr-Nordenkampf J (2009) Chemical looping for syngas and power generation with CO2 capture: pilot plant study and process modeling. Suedwest-deutscher Verlag fuer Hochschulschriften
5.
Zurück zum Zitat Mokhatab S, Poe WA, Speight JG (2006) Handbook of natural gas transmission and processing. Gulf Professional Publishing, Houston Mokhatab S, Poe WA, Speight JG (2006) Handbook of natural gas transmission and processing. Gulf Professional Publishing, Houston
6.
Zurück zum Zitat Tagliabue M, Farrusseng D, Valencia S et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155:553–566 Tagliabue M, Farrusseng D, Valencia S et al (2009) Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J 155:553–566
7.
Zurück zum Zitat Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture—development and progress. Chem Eng Process 49:313–322 Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture—development and progress. Chem Eng Process 49:313–322
8.
Zurück zum Zitat Wappel D, Gronald G, Kalb R et al (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenhouse Gas Control 4:486–494 Wappel D, Gronald G, Kalb R et al (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenhouse Gas Control 4:486–494
9.
Zurück zum Zitat Beck DW (1974) Zeolite molecular sieves. Wiley, New York Beck DW (1974) Zeolite molecular sieves. Wiley, New York
10.
Zurück zum Zitat Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854 Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854
11.
Zurück zum Zitat Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714 Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423:705–714
12.
Zurück zum Zitat Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375 Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375
13.
Zurück zum Zitat Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214 Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214
14.
Zurück zum Zitat Batten SR, Neville SM, Turner DR (2009) Coordination polymers: design, analysis and application. RSC Publishing, Cambridge Batten SR, Neville SM, Turner DR (2009) Coordination polymers: design, analysis and application. RSC Publishing, Cambridge
15.
Zurück zum Zitat MacGillivray L (2010) Metal-organic frameworks: design and application. Wiley, New York MacGillivray L (2010) Metal-organic frameworks: design and application. Wiley, New York
16.
Zurück zum Zitat Sumida K, Rogow DL, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781 Sumida K, Rogow DL, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781
17.
Zurück zum Zitat Suh MP, Park HJ, Prasad TK et al (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112:782–835 Suh MP, Park HJ, Prasad TK et al (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112:782–835
18.
Zurück zum Zitat Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932 Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932
19.
Zurück zum Zitat Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125 Kreno LE, Leong K, Farha OK et al (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125
20.
Zurück zum Zitat Horcajada P, Gref R, Baati T et al (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268 Horcajada P, Gref R, Baati T et al (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268
21.
Zurück zum Zitat Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231 Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231
22.
Zurück zum Zitat Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M et al (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38:1257–1283 Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M et al (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38:1257–1283
23.
Zurück zum Zitat Zhao D, Timmons DJ, Yuan DQ et al (2011) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44:123–133 Zhao D, Timmons DJ, Yuan DQ et al (2011) Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res 44:123–133
24.
Zurück zum Zitat Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279 Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279
25.
Zurück zum Zitat Kitaura R, Kitagawa S, Kubota Y et al (2002) Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science 298:2358–2361 Kitaura R, Kitagawa S, Kubota Y et al (2002) Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science 298:2358–2361
26.
Zurück zum Zitat Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042 Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042
27.
Zurück zum Zitat Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504 Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504
28.
Zurück zum Zitat Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969 Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969
29.
Zurück zum Zitat O’ Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702 O’ Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702
30.
Zurück zum Zitat Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000 Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000
31.
Zurück zum Zitat Chui SSY, Lo SMF, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150 Chui SSY, Lo SMF, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150
32.
Zurück zum Zitat Ma SQ, Sun DF, Ambrogio M et al (2007) Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859 Ma SQ, Sun DF, Ambrogio M et al (2007) Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859
33.
Zurück zum Zitat Li JR, Zhou HC (2010) Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra. Nat Chem 2:893–898 Li JR, Zhou HC (2010) Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra. Nat Chem 2:893–898
34.
Zurück zum Zitat Li JR, Yakovenko AA, Lu W et al (2010) Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo–Mo dimers. J Am Chem Soc 132:17599–17610 Li JR, Yakovenko AA, Lu W et al (2010) Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo–Mo dimers. J Am Chem Soc 132:17599–17610
35.
Zurück zum Zitat Yuan DQ, Zhao D, Sun DF et al (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357–5361 Yuan DQ, Zhao D, Sun DF et al (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357–5361
36.
Zurück zum Zitat Banerjee R, Phan A, Wang B et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science 319:939–943 Banerjee R, Phan A, Wang B et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science 319:939–943
37.
Zurück zum Zitat Stock N (2010) High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater 129:287–295 Stock N (2010) High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater 129:287–295
38.
Zurück zum Zitat Jing X, He C, Dong D et al (2012) Homochiral crystallization of metal-organic silver frameworks: asymmetric [3 + 2] cycloaddition of an azomethine ylide. Angew Chem Int Ed 40:10127–10131 Jing X, He C, Dong D et al (2012) Homochiral crystallization of metal-organic silver frameworks: asymmetric [3 + 2] cycloaddition of an azomethine ylide. Angew Chem Int Ed 40:10127–10131
39.
Zurück zum Zitat Lin ZJ, Slawin AMZ, Morris RE (2007) Chiral induction in the ionothermal synthesis of a 3D coordination polymer. J Am Chem Soc 129:4880–4881 Lin ZJ, Slawin AMZ, Morris RE (2007) Chiral induction in the ionothermal synthesis of a 3D coordination polymer. J Am Chem Soc 129:4880–4881
40.
Zurück zum Zitat Jhung SH, Lee JH, Chang JS (2005) Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull Korean Chem Soc 26:880–881 Jhung SH, Lee JH, Chang JS (2005) Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull Korean Chem Soc 26:880–881
41.
Zurück zum Zitat Schlesinger M, Schulze S, Hietschold M et al (2010) Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater 132:121–127 Schlesinger M, Schulze S, Hietschold M et al (2010) Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater 132:121–127
42.
Zurück zum Zitat Pichon A, Lazuen-Garaya A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214 Pichon A, Lazuen-Garaya A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214
43.
Zurück zum Zitat Chen BL, Ockwig NW, Millward AR et al (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44:4745–4749 Chen BL, Ockwig NW, Millward AR et al (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44:4745–4749
44.
Zurück zum Zitat Millange F, Serre C, Férey G (2002) Synthesis, structure determination and properties of MIL-53 as and MIL-53ht: the first CrIII hybrid inorganic–organic microporous solids: CrIII(OH) · {O2C–C6H4–CO2} · {HO2C–C6H4–CO2H} x . Chem Commun 38:822–823 Millange F, Serre C, Férey G (2002) Synthesis, structure determination and properties of MIL-53 as and MIL-53ht: the first CrIII hybrid inorganic–organic microporous solids: CrIII(OH) · {O2C–C6H4–CO2} · {HO2C–C6H4–CO2H} x . Chem Commun 38:822–823
45.
Zurück zum Zitat Serre C, Millange F, Thouvenot C et al (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH) · {O2C–C6H4–CO2} · {HO2C–C6H4–CO2H}x · H2Oy. J Am Chem Soc 124:13519–13526 Serre C, Millange F, Thouvenot C et al (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH) · {O2C–C6H4–CO2} · {HO2C–C6H4–CO2H}x · H2Oy. J Am Chem Soc 124:13519–13526
46.
Zurück zum Zitat Loiseau T, Serre C, Huguenard C et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382 Loiseau T, Serre C, Huguenard C et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382
47.
Zurück zum Zitat Cui YJ, Yue YF, Qian GD et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162 Cui YJ, Yue YF, Qian GD et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162
48.
Zurück zum Zitat Lan An J, Li KH, Wu HH et al (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338 Lan An J, Li KH, Wu HH et al (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338
49.
Zurück zum Zitat Pramanik S, Zheng C, Zhang X et al (2011) New microporous metal–organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J Am Chem Soc 133:4153–4155 Pramanik S, Zheng C, Zhang X et al (2011) New microporous metal–organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J Am Chem Soc 133:4153–4155
50.
Zurück zum Zitat Furukawa H, Ko N, Go YB et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428 Furukawa H, Ko N, Go YB et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428
51.
Zurück zum Zitat Makal TA, Li JR, Lu W et al (2012) Methane storage in advanced porous materials. Chem Soc Rev 41:7761–7779 Makal TA, Li JR, Lu W et al (2012) Methane storage in advanced porous materials. Chem Soc Rev 41:7761–7779
52.
Zurück zum Zitat Wang XS, Ma SQ, Rauch K et al (2008) Metal–organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater 20:3145–3152 Wang XS, Ma SQ, Rauch K et al (2008) Metal–organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem Mater 20:3145–3152
53.
Zurück zum Zitat Ma SQ, Sun DF, Simmons JM et al (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016 Ma SQ, Sun DF, Simmons JM et al (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016
54.
Zurück zum Zitat Seo JS, Whang D, Lee H et al (2000) A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404:982–986 Seo JS, Whang D, Lee H et al (2000) A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404:982–986
55.
Zurück zum Zitat Evans OR, Ngo HL, Lin W (2001) Chiral porous solids based on lamellar lanthanide phosphonates. J Am Chem Soc 123:10395–10396 Evans OR, Ngo HL, Lin W (2001) Chiral porous solids based on lamellar lanthanide phosphonates. J Am Chem Soc 123:10395–10396
56.
Zurück zum Zitat Horcajada P, Serre C, Vallet-Regí M et al (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978 Horcajada P, Serre C, Vallet-Regí M et al (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978
57.
Zurück zum Zitat Li JR, Ma YG, McCarthy MC et al (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823 Li JR, Ma YG, McCarthy MC et al (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823
58.
Zurück zum Zitat Mason JA, Sumida K, Herm ZR et al (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4: 3030-3040 Mason JA, Sumida K, Herm ZR et al (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4: 3030-3040
59.
Zurück zum Zitat Bao Z, Yu L, Ren Q et al (2011) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 353:549–556 Bao Z, Yu L, Ren Q et al (2011) Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J Colloid Interface Sci 353:549–556
60.
Zurück zum Zitat Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127 Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127
61.
Zurück zum Zitat Saha D, Bao ZB, Jia F et al (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 44:1820–1826 Saha D, Bao ZB, Jia F et al (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 44:1820–1826
62.
Zurück zum Zitat Zheng B, Bai J, Duan J et al (2011) Enhanced CO2 binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J Am Chem Soc 133:748–751 Zheng B, Bai J, Duan J et al (2011) Enhanced CO2 binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J Am Chem Soc 133:748–751
63.
Zurück zum Zitat Demessence A, D’Alessandro DM, Foo ML et al (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal–organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786 Demessence A, D’Alessandro DM, Foo ML et al (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal–organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786
64.
Zurück zum Zitat Bae YS, Farha OK, Hupp JT et al (2009) Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:2131–2134 Bae YS, Farha OK, Hupp JT et al (2009) Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:2131–2134
65.
Zurück zum Zitat Kondo A, Chinen A, Kajiro H et al (2009) Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs. Chem Eur J 15:7549–7553 Kondo A, Chinen A, Kajiro H et al (2009) Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs. Chem Eur J 15:7549–7553
66.
Zurück zum Zitat An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579 An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132:5578–5579
67.
Zurück zum Zitat Maji TK, Matsuda R, Kitagawa S (2007) A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater 6:142–148 Maji TK, Matsuda R, Kitagawa S (2007) A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater 6:142–148
68.
Zurück zum Zitat Yazaydin AÖ, Benin AI, Faheem SA et al (2009) Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21:1425–1430 Yazaydin AÖ, Benin AI, Faheem SA et al (2009) Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21:1425–1430
69.
Zurück zum Zitat Llewellyn PL, Bourrrelly S, Serre C et al (2006) How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed 4:7751–7754 Llewellyn PL, Bourrrelly S, Serre C et al (2006) How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed 4:7751–7754
70.
Zurück zum Zitat Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3:879–891 Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3:879–891
71.
Zurück zum Zitat Farrusseng D, Daniel C, Gaudillere C et al (2009) Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation. Langmuir 25:7383–7388 Farrusseng D, Daniel C, Gaudillere C et al (2009) Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation. Langmuir 25:7383–7388
72.
Zurück zum Zitat Vaidhyanathan R, Iremonger SS, Shimizu GKH et al (2010) Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330:650–653 Vaidhyanathan R, Iremonger SS, Shimizu GKH et al (2010) Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330:650–653
73.
Zurück zum Zitat Bordiga S, Regli L, Bonino F et al (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9:2676–2685 Bordiga S, Regli L, Bonino F et al (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9:2676–2685
74.
Zurück zum Zitat Dietzel PDC, Johnsen RE, Fjellvag H et al (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem Commun 41:5125–5127 Dietzel PDC, Johnsen RE, Fjellvag H et al (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem Commun 41:5125–5127
75.
Zurück zum Zitat Vimont A, Travert A, Bazin P et al (2007) Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2). Chem Commun 31:3291–3293 Vimont A, Travert A, Bazin P et al (2007) Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2). Chem Commun 31:3291–3293
76.
Zurück zum Zitat Li JR, Tao Y, Yu Q et al (2008) Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chem Eur J 14:2771–2776 Li JR, Tao Y, Yu Q et al (2008) Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chem Eur J 14:2771–2776
77.
Zurück zum Zitat Dybtsev DN, Chun H, Yoon SH et al (2004) Microporous manganese formate: a simple metal–organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc 126:32–33 Dybtsev DN, Chun H, Yoon SH et al (2004) Microporous manganese formate: a simple metal–organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc 126:32–33
78.
Zurück zum Zitat Loiseau T, Lecroq L, Volkringer C et al (2006) MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J Am Chem Soc 128:10223–10230 Loiseau T, Lecroq L, Volkringer C et al (2006) MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J Am Chem Soc 128:10223–10230
79.
Zurück zum Zitat Xue M, Ma SQ, Jin Z et al (2008) Robust metal–organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. Inorg Chem 47:6825–6828 Xue M, Ma SQ, Jin Z et al (2008) Robust metal–organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. Inorg Chem 47:6825–6828
80.
Zurück zum Zitat Ma SQ, Wang XS, Yuan DQ et al (2008) A coordinatively linked Yb metal-organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47:4130–4133 Ma SQ, Wang XS, Yuan DQ et al (2008) A coordinatively linked Yb metal-organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47:4130–4133
81.
Zurück zum Zitat Bae YS, Mulfort KL, Frost H et al (2008) Separation of CO2 from CH4 using mixed-ligand metal–organic frameworks. Langmuir 24:8592–8598 Bae YS, Mulfort KL, Frost H et al (2008) Separation of CO2 from CH4 using mixed-ligand metal–organic frameworks. Langmuir 24:8592–8598
82.
Zurück zum Zitat Bae YS, Farha OK, Spokoyny AM (2008) Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem Commun 35:4135–4137 Bae YS, Farha OK, Spokoyny AM (2008) Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem Commun 35:4135–4137
83.
Zurück zum Zitat Wang B, Côte AP, Furukawa H et al (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211 Wang B, Côte AP, Furukawa H et al (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211
84.
Zurück zum Zitat Chen BL, Ma SQ, Zapata F et al (2007) Rationally designed micropores within a metal–organic framework for selective sorption of gas molecules. Inorg Chem 46:1233–1236 Chen BL, Ma SQ, Zapata F et al (2007) Rationally designed micropores within a metal–organic framework for selective sorption of gas molecules. Inorg Chem 46:1233–1236
85.
Zurück zum Zitat Bourrelly S, Llewellyn PL, Serre C et al (2005) Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127:13519–13521 Bourrelly S, Llewellyn PL, Serre C et al (2005) Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127:13519–13521
86.
Zurück zum Zitat Hamon L, Llewellyn PL, Devic T, Ghoufi A et al (2009) Co-adsorption and separation of CO2–CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J Am Chem Soc 131:17490–17499 Hamon L, Llewellyn PL, Devic T, Ghoufi A et al (2009) Co-adsorption and separation of CO2–CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J Am Chem Soc 131:17490–17499
87.
Zurück zum Zitat Férey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380–1399 Férey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380–1399
88.
Zurück zum Zitat Culp JT, Smith MR, Bittner E et al (2008) Hysteresis in the physisorption of CO2 and N2 in a flexible pillared layer nickel cyanide. J Am Chem Soc 130:12427–12434 Culp JT, Smith MR, Bittner E et al (2008) Hysteresis in the physisorption of CO2 and N2 in a flexible pillared layer nickel cyanide. J Am Chem Soc 130:12427–12434
89.
Zurück zum Zitat Hayashi H, Côte AP, Furukawa H et al (2007) Zeolite A imidazolate frameworks. Nat Mater 6:501–506 Hayashi H, Côte AP, Furukawa H et al (2007) Zeolite A imidazolate frameworks. Nat Mater 6:501–506
90.
Zurück zum Zitat Kitaura R, Seki K, Akiyama G et al (2003) Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew Chem Int Ed 42:428–431 Kitaura R, Seki K, Akiyama G et al (2003) Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew Chem Int Ed 42:428–431
91.
Zurück zum Zitat Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877 Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877
92.
Zurück zum Zitat Britt D, Furukawa H, Wang B et al (2009) Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc Natl Acad Sci USA 106:20637–20640 Britt D, Furukawa H, Wang B et al (2009) Highly efficient separation of carbon dioxide by a metal–organic framework replete with open metal sites. Proc Natl Acad Sci USA 106:20637–20640
93.
Zurück zum Zitat Ramsahye NA, Maurin G, Bourrelly S (2007) On the breathing effect of a metal–organic framework upon CO2 adsorption: monte carlo compared to microcalorimetry experiments. Chem Commun 31:3261–3263 Ramsahye NA, Maurin G, Bourrelly S (2007) On the breathing effect of a metal–organic framework upon CO2 adsorption: monte carlo compared to microcalorimetry experiments. Chem Commun 31:3261–3263
94.
Zurück zum Zitat Finsy V, Ma L, Alaerts L et al (2009) Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Micropor Mesopor Mater 120:221–227 Finsy V, Ma L, Alaerts L et al (2009) Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Micropor Mesopor Mater 120:221–227
95.
Zurück zum Zitat Bárcia PS, Bastin L, Hurtado EJ et al (2008) Single and multicomponent sorption of CO2, CH4 and N2 in a microporous metal organic framework. Sep Sci Technol 43:3494–3521 Bárcia PS, Bastin L, Hurtado EJ et al (2008) Single and multicomponent sorption of CO2, CH4 and N2 in a microporous metal organic framework. Sep Sci Technol 43:3494–3521
96.
Zurück zum Zitat Bastin L, Bárcia PS, Hurtado EJ et al (2008) A microporous metal−organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J Phys Chem C 112:1575–1581 Bastin L, Bárcia PS, Hurtado EJ et al (2008) A microporous metal−organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J Phys Chem C 112:1575–1581
97.
Zurück zum Zitat Yoon JW, Jhung SH, Hwang YK et al (2007) Gas-sorption selectivity of CUK-1: a porous coordination solid made of cobalt(II) and pyridine-2,4- dicarboxylic acid. Adv Mater 19:1830–1834 Yoon JW, Jhung SH, Hwang YK et al (2007) Gas-sorption selectivity of CUK-1: a porous coordination solid made of cobalt(II) and pyridine-2,4- dicarboxylic acid. Adv Mater 19:1830–1834
98.
Zurück zum Zitat Quartapelle Procopio E, Linares F, Montoro C et al (2010) Cation-exchange porosity tuning in anionic metal-organic frameworks for the selective separation of gases and vapors and for catalysis. Angew Chem Int Ed 49:7308–7311 Quartapelle Procopio E, Linares F, Montoro C et al (2010) Cation-exchange porosity tuning in anionic metal-organic frameworks for the selective separation of gases and vapors and for catalysis. Angew Chem Int Ed 49:7308–7311
99.
Zurück zum Zitat Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999 Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999
100.
Zurück zum Zitat McDonald TM, Lee WR, Mason JA et al (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065 McDonald TM, Lee WR, Mason JA et al (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065
101.
Zurück zum Zitat Arstad B, Fjellvåg H, Kongshaug KO et al (2008) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14:755–762 Arstad B, Fjellvåg H, Kongshaug KO et al (2008) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14:755–762
102.
Zurück zum Zitat Stavitski E, Pidko EA, Couck S et al (2011) Complexity behind CO2 capture on NH2-MIL-53(Al). Langmuir 27:3970–3976 Stavitski E, Pidko EA, Couck S et al (2011) Complexity behind CO2 capture on NH2-MIL-53(Al). Langmuir 27:3970–3976
103.
Zurück zum Zitat Deng HX, Doonan CJ, Furukawa H et al (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850 Deng HX, Doonan CJ, Furukawa H et al (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850
104.
Zurück zum Zitat Higman C, Burgt V (2003) Gasification. Elsevier, Amsterdam Higman C, Burgt V (2003) Gasification. Elsevier, Amsterdam
105.
Zurück zum Zitat Dietzel PDC, Besikiotis V, Blom R (2009) Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J Mater Chem 19:7362–7370 Dietzel PDC, Besikiotis V, Blom R (2009) Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J Mater Chem 19:7362–7370
106.
Zurück zum Zitat Herm ZR, Swisher JA, Smit B et al (2011) Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133:5664–5667 Herm ZR, Swisher JA, Smit B et al (2011) Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133:5664–5667
107.
Zurück zum Zitat Mu B, Schoenecker PM, Walton KS (2010) Gas adsorption study on mesoporous metal–organic framework UMCM-1. J Phys Chem C 114:6464–6471 Mu B, Schoenecker PM, Walton KS (2010) Gas adsorption study on mesoporous metal–organic framework UMCM-1. J Phys Chem C 114:6464–6471
108.
Zurück zum Zitat García-Ricard OJ, Hernández-Maldonado A (2010) Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) porous coordination sorbents: activation temperature, textural properties, and CO2 adsorption at low pressure range. J Phys Chem C 114:1827–1834 García-Ricard OJ, Hernández-Maldonado A (2010) Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) porous coordination sorbents: activation temperature, textural properties, and CO2 adsorption at low pressure range. J Phys Chem C 114:1827–1834
109.
Zurück zum Zitat Li Y, Yang RT (2007) Gas adsorption and storage in metal–organic framework MOF-177. Langmuir 23:12937–12944 Li Y, Yang RT (2007) Gas adsorption and storage in metal–organic framework MOF-177. Langmuir 23:12937–12944
110.
Zurück zum Zitat Wang QM, Shen D, Bülow M et al (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230 Wang QM, Shen D, Bülow M et al (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230
111.
Zurück zum Zitat Murray LJ, Dincă M, Yano J et al (2010) Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 132:7856–7857 Murray LJ, Dincă M, Yano J et al (2010) Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 132:7856–7857
112.
Zurück zum Zitat Bloch ED, Murray LJ, Queen WL et al (2011) Selective binding of O2 over N2 in a redox-active metal–organic framework with open iron (II) coordination sites. J Am Chem Soc 133:14814–14822 Bloch ED, Murray LJ, Queen WL et al (2011) Selective binding of O2 over N2 in a redox-active metal–organic framework with open iron (II) coordination sites. J Am Chem Soc 133:14814–14822
113.
Zurück zum Zitat Liu YY, Ng ZF, Khan EA et al (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Micropor Mesopor Mater 118:296–301 Liu YY, Ng ZF, Khan EA et al (2009) Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Micropor Mesopor Mater 118:296–301
114.
Zurück zum Zitat Yoo Y, Lai ZP, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth Micropor Mesopor Mater 123:100–106 Yoo Y, Lai ZP, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth Micropor Mesopor Mater 123:100–106
115.
Zurück zum Zitat Keskin S, Sholl D (2007) Screening meta–organic framework materials for membrane-based methane/carbon dioxide separations. J Phys Chem C 111:14055–14059 Keskin S, Sholl D (2007) Screening meta–organic framework materials for membrane-based methane/carbon dioxide separations. J Phys Chem C 111:14055–14059
116.
Zurück zum Zitat Guo H, Zhu G, Hewitt IJ et al (2009) “Twin copper source” growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J Am Chem Soc 131:1646–1647 Guo H, Zhu G, Hewitt IJ et al (2009) “Twin copper source” growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J Am Chem Soc 131:1646–1647
117.
Zurück zum Zitat Liu Y, Hu E, Khan EA et al (2010) Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J Membr Sci 353:36–40 Liu Y, Hu E, Khan EA et al (2010) Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J Membr Sci 353:36–40
118.
Zurück zum Zitat Adams R, Carson C, Ward J et al (2010) Metal organic framework mixed matrix membranes for gas separations. Micropor Mesopor Mater 131:13–20 Adams R, Carson C, Ward J et al (2010) Metal organic framework mixed matrix membranes for gas separations. Micropor Mesopor Mater 131:13–20
119.
Zurück zum Zitat Ordoñez MJC, Balkus KJ Jr, Ferraris JP et al (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37 Ordoñez MJC, Balkus KJ Jr, Ferraris JP et al (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37
120.
Zurück zum Zitat Liang ZJ, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789 Liang ZJ, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23:2785–2789
121.
Zurück zum Zitat Couck S, Denayer JFM, Baron GV et al (2009) An amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327 Couck S, Denayer JFM, Baron GV et al (2009) An amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131:6326–6327
122.
Zurück zum Zitat Bloch ED, Britt D, Lee C et al (2010) Metal insertion in a microporous metal–organic framework lined with 2,2′-bipyridine. J Am Chem Soc 132:14382–14384 Bloch ED, Britt D, Lee C et al (2010) Metal insertion in a microporous metal–organic framework lined with 2,2′-bipyridine. J Am Chem Soc 132:14382–14384
123.
Zurück zum Zitat Li JR, Yu JM, Lu WG et al (2013) Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Comm 4:1538–1545 Li JR, Yu JM, Lu WG et al (2013) Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Comm 4:1538–1545
124.
Zurück zum Zitat Ma SQ, Sun DF, Wang XS et al (2007) A mesh-adjustable molecular sieve for general use in gas separation. Angew Chem Int Ed 46:2458–2462 Ma SQ, Sun DF, Wang XS et al (2007) A mesh-adjustable molecular sieve for general use in gas separation. Angew Chem Int Ed 46:2458–2462
125.
Zurück zum Zitat Ma SQ, Sun DF, Yuan DQ et al (2009) Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J Am Chem Soc 131:6445–6451 Ma SQ, Sun DF, Yuan DQ et al (2009) Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J Am Chem Soc 131:6445–6451
126.
Zurück zum Zitat Yang QY, Liu DH, Zhong C et al (2013) Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev 113:8261–8323 Yang QY, Liu DH, Zhong C et al (2013) Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev 113:8261–8323
127.
Zurück zum Zitat Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768 Skoulidas AI, Sholl DS (2005) Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J Phys Chem B 109:15760–15768
128.
Zurück zum Zitat Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. ChemPhysChem 7:1417–1421 Yang Q, Zhong C (2006) Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. ChemPhysChem 7:1417–1421
129.
Zurück zum Zitat Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal–organic frameworks. J Phys Chem B 110:17776–17783 Yang Q, Zhong C (2006) Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal–organic frameworks. J Phys Chem B 110:17776–17783
130.
Zurück zum Zitat Dubbeldam D, Frost H, Walton KS et al (2007) Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilib 261:152–161 Dubbeldam D, Frost H, Walton KS et al (2007) Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilib 261:152–161
131.
Zurück zum Zitat Babarao R, Jiang J, Sandler SI (2009) Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal–organic frameworks. Langmuir 25:6590–6590 Babarao R, Jiang J, Sandler SI (2009) Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal–organic frameworks. Langmuir 25:6590–6590
132.
Zurück zum Zitat Yang QY, Zhong CL, Chen JF (2008) Computational study of CO2 storage in metal–organic frameworks. J Phys Chem C 112:1562–1569 Yang QY, Zhong CL, Chen JF (2008) Computational study of CO2 storage in metal–organic frameworks. J Phys Chem C 112:1562–1569
133.
Zurück zum Zitat Xu Q, Zhong C (2010) A general approach for estimating framework charges in metal–organic frameworks. J Phys Chem C 114:5035–5042 Xu Q, Zhong C (2010) A general approach for estimating framework charges in metal–organic frameworks. J Phys Chem C 114:5035–5042
134.
Zurück zum Zitat Dubbeldam D, Krishna R, Snurr RQ (2009) Method for analyzing structural changes of flexible metal–organic frameworks induced by adsorbates. J Phys Chem C 113:19317–19327 Dubbeldam D, Krishna R, Snurr RQ (2009) Method for analyzing structural changes of flexible metal–organic frameworks induced by adsorbates. J Phys Chem C 113:19317–19327
135.
Zurück zum Zitat Lu CM, Liu J, Xiao KF et al (2010) Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem Eng J 156:465–470 Lu CM, Liu J, Xiao KF et al (2010) Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem Eng J 156:465–470
Metadaten
Titel
Metal-Organic Frameworks (MOFs) for CO2 Capture
verfasst von
Hui Yang
Jian-Rong Li
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-54646-4_3