Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 6/2020

01.11.2020 | SYSTEMS THEORY AND GENERAL CONTROL THEORY

Method for Forming Autorotations in Controllable Mechanical System with Two Degrees of Freedom

verfasst von: L. A. Klimina

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An autonomous mechanical system with two rotational degrees of freedom, undergoing the action of conservative and nonconservative forces, is considered. The corresponding dynamical system contains changeable parameters that can be treated as amplifying coefficients for control actions. It is required to select the values of these parameters in order to form an autorotation mode in the system that possesses the prescribed properties. We propose an iterative search method for the corresponding values of the parameters. This approach is a modification of the Andronov–Pontryagin method and, unlike the latter, it does not assume that there is a small parameter in the system. We provide an example of the application of the proposed method to a model of a wind turbine: the value of the parameter, ensuring the existence of a mode with a high value of the mechanical power trapped from the flow, is selected. In the dynamical system, an attractor that is a trajectory close to a periodic one corresponds to this mode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Andronov, “Les cycles limites de Poincare et la theorie des oscillations auto-entretenues,” C. R. Acad. Sci. 189, 559–561 (1929). A. A. Andronov, “Les cycles limites de Poincare et la theorie des oscillations auto-entretenues,” C. R. Acad. Sci. 189, 559–561 (1929).
2.
Zurück zum Zitat A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Theory of Bifurcations of Dynamic Systems on a Plane (Nauka, Moscow, 1967; Israel Program for Scientific Transl., Jerusalem, 1971). A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Theory of Bifurcations of Dynamic Systems on a Plane (Nauka, Moscow, 1967; Israel Program for Scientific Transl., Jerusalem, 1971).
3.
Zurück zum Zitat L. D. Akulenko, D. D. Leshchenko, and F. L. Chernous’ko, “ Fast motion of a heavy rigid body aboud a fixed point in a resistive medium,” Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 5–13 (1982). L. D. Akulenko, D. D. Leshchenko, and F. L. Chernous’ko, “ Fast motion of a heavy rigid body aboud a fixed point in a resistive medium,” Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 5–13 (1982).
4.
Zurück zum Zitat E. S. Shalimova, “Steady and periodic modes in the problem of motion of a heavy material point on a rotating sphere (the viscous friction case),” Mosc. Univ. Mech. Bull. 69 (4), 89 (2014).CrossRef E. S. Shalimova, “Steady and periodic modes in the problem of motion of a heavy material point on a rotating sphere (the viscous friction case),” Mosc. Univ. Mech. Bull. 69 (4), 89 (2014).CrossRef
5.
Zurück zum Zitat Yu. D. Selyutskiy, “Dynamics of an elastically mounted wing in flow,” AIP Conf. Proc. 2046, 020085-1 (2018).CrossRef Yu. D. Selyutskiy, “Dynamics of an elastically mounted wing in flow,” AIP Conf. Proc. 2046, 020085-1 (2018).CrossRef
6.
Zurück zum Zitat M. Z. Dosaev, L. A. Klimina, B. Ya. Lokshin, Yu. D. Selyutskii, and E. S. Shalimova, “On the autorotation modes of a double-rotor Darrieus wind turbine,” Mech. Solids, No. 1 (2021, in press). M. Z. Dosaev, L. A. Klimina, B. Ya. Lokshin, Yu. D. Selyutskii, and E. S. Shalimova, “On the autorotation modes of a double-rotor Darrieus wind turbine,” Mech. Solids, No. 1 (2021, in press).
7.
Zurück zum Zitat L. A. Klimina, “Method for constructing periodic solutions of a controlled dynamic system with a cylindrical phase space,” J. Comput. Syst. Sci. Int. 59, 139 (2020).CrossRef L. A. Klimina, “Method for constructing periodic solutions of a controlled dynamic system with a cylindrical phase space,” J. Comput. Syst. Sci. Int. 59, 139 (2020).CrossRef
8.
9.
Zurück zum Zitat R. E. Kondrashov and A. D. Morozov, “On global behaviour of the solutions of system of two Duffing—Van der Pole equations,” Nelin. Dinam. 7, 437–449 (2011).CrossRef R. E. Kondrashov and A. D. Morozov, “On global behaviour of the solutions of system of two Duffing—Van der Pole equations,” Nelin. Dinam. 7, 437–449 (2011).CrossRef
10.
Zurück zum Zitat K. Kamiyama, M. Komuro, and T. Endo, “Bifurcation of quasi-periodic oscillations in mutually coupled hard-type oscillators: Demonstration of unstable quasi-periodic orbits,” Int. J. Bifurc. Chaos 22, 1230022 (2012).CrossRef K. Kamiyama, M. Komuro, and T. Endo, “Bifurcation of quasi-periodic oscillations in mutually coupled hard-type oscillators: Demonstration of unstable quasi-periodic orbits,” Int. J. Bifurc. Chaos 22, 1230022 (2012).CrossRef
11.
Zurück zum Zitat F. Schilder, H. M. Osinga, and W. Vogt, “Continuation of quasi-periodic invariant tori,” SIAM J. Appl. Dynam. Syst. 4, 459–488 (2005).MathSciNetCrossRef F. Schilder, H. M. Osinga, and W. Vogt, “Continuation of quasi-periodic invariant tori,” SIAM J. Appl. Dynam. Syst. 4, 459–488 (2005).MathSciNetCrossRef
12.
Zurück zum Zitat T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989).CrossRef T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989).CrossRef
13.
Zurück zum Zitat Chr. Kaas-Petersen, “Computation of quasiperiodic solutions of forced dissipative systems,” J. Comput. Phys. 58, 395–408 (1985). Chr. Kaas-Petersen, “Computation of quasiperiodic solutions of forced dissipative systems,” J. Comput. Phys. 58, 395–408 (1985).
14.
Zurück zum Zitat N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, The Method of Accelerated Convergence in Nonlinear Mechanics (Nauk. Dumka, Kiev, 1969) [in Russian]. N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, The Method of Accelerated Convergence in Nonlinear Mechanics (Nauk. Dumka, Kiev, 1969) [in Russian].
15.
Zurück zum Zitat J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi, and P. Pilarczyk, “Combinatorial-topological framework for the analysis of global dynamics,” Chaos 22, 047508 (2012).MathSciNetCrossRef J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi, and P. Pilarczyk, “Combinatorial-topological framework for the analysis of global dynamics,” Chaos 22, 047508 (2012).MathSciNetCrossRef
16.
Zurück zum Zitat K. Kamiyama, M. Komuro, and T. Endo, “Algorithms for obtaining a saddle torus between two attractors,” Int. J. Bifurc. Chaos 23, 1330032 (2013).MathSciNetCrossRef K. Kamiyama, M. Komuro, and T. Endo, “Algorithms for obtaining a saddle torus between two attractors,” Int. J. Bifurc. Chaos 23, 1330032 (2013).MathSciNetCrossRef
17.
Zurück zum Zitat B. Zhou, F. Thouverez, and D. Lenoir, “A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems,” Mech. Syst. Signal Process. 64, 233–244 (2015).CrossRef B. Zhou, F. Thouverez, and D. Lenoir, “A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems,” Mech. Syst. Signal Process. 64, 233–244 (2015).CrossRef
18.
Zurück zum Zitat G. Chen and J. F. Dunne, “A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions,” J. Sound Vibr. 385, 284–299 (2016).CrossRef G. Chen and J. F. Dunne, “A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions,” J. Sound Vibr. 385, 284–299 (2016).CrossRef
19.
Zurück zum Zitat A. M. Samoilenko, “Numerical analytical method of investigating periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh. 17 (04), 82–93 (1965).CrossRef A. M. Samoilenko, “Numerical analytical method of investigating periodic systems of ordinary differential equations. I,” Ukr. Mat. Zh. 17 (04), 82–93 (1965).CrossRef
20.
Zurück zum Zitat A. A. Grin’ and S. V. Rudevich, “Dulac–Cherkas test for determining the exact number of limit cycles of autonomous systems on the cylinder,” Differ. Equat. 55, 319 (2019).MathSciNetCrossRef A. A. Grin’ and S. V. Rudevich, “Dulac–Cherkas test for determining the exact number of limit cycles of autonomous systems on the cylinder,” Differ. Equat. 55, 319 (2019).MathSciNetCrossRef
21.
Zurück zum Zitat L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems,” Zh. Eksp. Teor. Fiz. 4 (9), 883–885 (1934). L. S. Pontryagin, “On dynamical systems close to Hamiltonian systems,” Zh. Eksp. Teor. Fiz. 4 (9), 883–885 (1934).
22.
Zurück zum Zitat L. A. Cherkas, A. A. Grin’, and V. I. Bulgakov, Constructive Methods for Studying Limit Cycles of Second-Order Autonomous Systems (Numerical-Algebraic Approach) (GrGU, Grodno, 2013) [in Russian]. L. A. Cherkas, A. A. Grin’, and V. I. Bulgakov, Constructive Methods for Studying Limit Cycles of Second-Order Autonomous Systems (Numerical-Algebraic Approach) (GrGU, Grodno, 2013) [in Russian].
23.
Zurück zum Zitat A. M. Formalskii, Stabilization and Motion Control of Unstable Objects (Walter de Gruyter, Berlin, Boston, 2015).CrossRef A. M. Formalskii, Stabilization and Motion Control of Unstable Objects (Walter de Gruyter, Berlin, Boston, 2015).CrossRef
24.
Zurück zum Zitat A. S. Kravets, Characteristics of Aviation Profiles (Gos. Izd. Oboron. Prom-sti, Moscow, 1939) [in Russian]. A. S. Kravets, Characteristics of Aviation Profiles (Gos. Izd. Oboron. Prom-sti, Moscow, 1939) [in Russian].
25.
Zurück zum Zitat M. Z. Dosaev, V. A. Samsonov, Yu. D. Selyutskii, Wen-Lung Lu, and Ching-Huei Lin, “Bifurcation of operation modes of small wind power stations and optimization of their characteristics,” Mech. Solids 44, 214 (2009).CrossRef M. Z. Dosaev, V. A. Samsonov, Yu. D. Selyutskii, Wen-Lung Lu, and Ching-Huei Lin, “Bifurcation of operation modes of small wind power stations and optimization of their characteristics,” Mech. Solids 44, 214 (2009).CrossRef
26.
Zurück zum Zitat L. A. Klimina and E. S. Shalimova, “Dual-propeller wind turbine with a differential planetary gear,” Mekhatron. Avtomatiz. Upravl. 18, 679–684 (2017).CrossRef L. A. Klimina and E. S. Shalimova, “Dual-propeller wind turbine with a differential planetary gear,” Mekhatron. Avtomatiz. Upravl. 18, 679–684 (2017).CrossRef
27.
Zurück zum Zitat M. V. Ishkhanyan and L. A. Klimina, “Wind turbine of the Savonius–Magnus type with conical blades: Dynamics and control,” J. Comput. Syst. Sci. Int. 59 (4), 630–638 (2020). M. V. Ishkhanyan and L. A. Klimina, “Wind turbine of the Savonius–Magnus type with conical blades: Dynamics and control,” J. Comput. Syst. Sci. Int. 59 (4), 630–638 (2020).
28.
Zurück zum Zitat M. Z. Dosaev, L. A. Klimina, Yu. D. Selyutskiy, and E. S. Shalimova, “Twin wind turbine powered by Magnus effect,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 4, 65–69 (2020). M. Z. Dosaev, L. A. Klimina, Yu. D. Selyutskiy, and E. S. Shalimova, “Twin wind turbine powered by Magnus effect,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 4, 65–69 (2020).
29.
Zurück zum Zitat L. A. Klimina, “Method for finding periodic trajectories of centrally symmetric dynamical systems on the plane,” Differ. Equations 55, 159 (2019).MathSciNetCrossRef L. A. Klimina, “Method for finding periodic trajectories of centrally symmetric dynamical systems on the plane,” Differ. Equations 55, 159 (2019).MathSciNetCrossRef
30.
Zurück zum Zitat L. A. Klimina and Yu. D. Selyutskiy, “Method to construct periodic solutions of controlled second-order dynamical systems,” J. Comput. Syst. Sci. Int. 58, 503 (2019).CrossRef L. A. Klimina and Yu. D. Selyutskiy, “Method to construct periodic solutions of controlled second-order dynamical systems,” J. Comput. Syst. Sci. Int. 58, 503 (2019).CrossRef
Metadaten
Titel
Method for Forming Autorotations in Controllable Mechanical System with Two Degrees of Freedom
verfasst von
L. A. Klimina
Publikationsdatum
01.11.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 6/2020
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230720060064

Weitere Artikel der Ausgabe 6/2020

Journal of Computer and Systems Sciences International 6/2020 Zur Ausgabe

Premium Partner