Skip to main content

2019 | OriginalPaper | Buchkapitel

Method of Energy Efficiency Increase of Low Power Radial Impeller Micromachines

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article is dedicated to the analysis of possibilities of hydrodynamically feasible velocity and pressure field formation in the impeller of low power radial impeller micromachines, up to 50 W, by means of flow control by methods of the border layer theory described in Schlichting’s papers. The purpose of the control is to reduce the extent of energetically unfavorable factors reducing the machine’s specific power. These factors include flow separation zones, secondary currents, and corner vortexes, “slippage” at the output of the impeller interblade channels. It is stated that the basic methods of flow structure control include blowing, suction, and turbulence formation, in particular, turbulence formation of local different energy flow areas existing in channels of radial impeller machines. The article covers the layout of such areas and ways of possible exchange between them. Besides, the working energy efficiency decrease of interblade channel slanted cut of machine impellers is analyzed. The method of turbulence formation is recognized as the most acceptable method of control of flow structure for micromachines. The experimental part of the study was to check the efficiency of flow turbulence formation in the impeller of a radial impeller machine in order to increase its specific power. Comparative hydraulic tests of the same centrifugal micropump with flow turbulence formation in the impeller and without turbulence formation were performed. A metal mesh with a free area ratio of 0.51 fixed on periphery of the impeller was used as a turbulator. The tests showed that installation of mesh increases specific power of the pump featured by head coefficient value, by 28.4%. This allows reducing the diameter of machine impeller by 5.3% while retaining the original power.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sherstyuk AN, Zaryankin AE (1976) Radial’no osevyye turbiny maloy moshchnosti (Radially axial turbines of low power). Mashinostroyeniye, Moscow Sherstyuk AN, Zaryankin AE (1976) Radial’no osevyye turbiny maloy moshchnosti (Radially axial turbines of low power). Mashinostroyeniye, Moscow
2.
Zurück zum Zitat Natalevich AS (1979) Vozdushnyye mikroturbiny (Air microturbines). Mashinostroyeniye, Moscow Natalevich AS (1979) Vozdushnyye mikroturbiny (Air microturbines). Mashinostroyeniye, Moscow
3.
Zurück zum Zitat Kirillov II (1972) Teoriya turbomashin (Theory of turbomachines). Mashinostroyeniye, Leningrad Kirillov II (1972) Teoriya turbomashin (Theory of turbomachines). Mashinostroyeniye, Leningrad
4.
Zurück zum Zitat Chistyakov FM (1967) Kholodil’nyye turboagregaty (Refrigerating turbine units). Mashinostroyeniye, Moscow Chistyakov FM (1967) Kholodil’nyye turboagregaty (Refrigerating turbine units). Mashinostroyeniye, Moscow
5.
Zurück zum Zitat Bukharin NN (1983) Modelirovaniye kharakteristik tsentrobezhnykh kholodil’nykh kompressorov (Modeling the characteristics of centrifugal refrigeration compressors). Mashinostroyeniye, Leningrad Bukharin NN (1983) Modelirovaniye kharakteristik tsentrobezhnykh kholodil’nykh kompressorov (Modeling the characteristics of centrifugal refrigeration compressors). Mashinostroyeniye, Leningrad
6.
Zurück zum Zitat Gauthier RC (1996) Theoretical model for an improved radiation pressure micromotor. Appl Phys Lett 69:2015–2017CrossRef Gauthier RC (1996) Theoretical model for an improved radiation pressure micromotor. Appl Phys Lett 69:2015–2017CrossRef
7.
Zurück zum Zitat Dorfman LA (1974) Chislennyye metody v gazodinamike turbomashin (Numerical methods in gas dynamics of turbomachines). Energiya, Leningrad Dorfman LA (1974) Chislennyye metody v gazodinamike turbomashin (Numerical methods in gas dynamics of turbomachines). Energiya, Leningrad
8.
Zurück zum Zitat Passar AV, Lashko VA (2013) Analiticheskiy obzor metodov rascheta turbiny na srednem radiuse (Analytical review of methods for calculating a turbine on an average radius). Inzhenernyy zh 9:2–12 Passar AV, Lashko VA (2013) Analiticheskiy obzor metodov rascheta turbiny na srednem radiuse (Analytical review of methods for calculating a turbine on an average radius). Inzhenernyy zh 9:2–12
9.
Zurück zum Zitat Hawthorne W, Novak R (1969) The aerodynamics of turbomachinery. Annu Rev Fluid Mech 1/4:341–366CrossRef Hawthorne W, Novak R (1969) The aerodynamics of turbomachinery. Annu Rev Fluid Mech 1/4:341–366CrossRef
10.
Zurück zum Zitat Binder FS, Gulati PS (1978) A method for predicting the performance of centripetal turbines in non steady flow. In: International conference on turbocharging and turbochargers, London, pp 233–240 Binder FS, Gulati PS (1978) A method for predicting the performance of centripetal turbines in non steady flow. In: International conference on turbocharging and turbochargers, London, pp 233–240
11.
Zurück zum Zitat Feng ZP, Deng QH, Li J (2005) Aerothermodynamic design and numerical simulation of radial inflow turbine impeller for a 100 kW microturbine. In: Turbo expo 2005: power for land, sea and air, vol. 1, Nevada, pp 873–880 Feng ZP, Deng QH, Li J (2005) Aerothermodynamic design and numerical simulation of radial inflow turbine impeller for a 100 kW microturbine. In: Turbo expo 2005: power for land, sea and air, vol. 1, Nevada, pp 873–880
12.
Zurück zum Zitat Fu L, Feng ZP, Li GJ, Deng QH, Shi Y, Gao TY (2015) Experimental validation of an integrated optimization design of radial turbine for micro gas turbines. J Zhejiang Univ Sci 16(3):241–249CrossRef Fu L, Feng ZP, Li GJ, Deng QH, Shi Y, Gao TY (2015) Experimental validation of an integrated optimization design of radial turbine for micro gas turbines. J Zhejiang Univ Sci 16(3):241–249CrossRef
13.
Zurück zum Zitat Mitrokhin VT (1974) Vybor parametrov i raschet tsentrostremitel’noy turbiny na statsionarnykh i perekhodnykh rezhimakh (Parameter selection and calculation of a centripetal turbine in stationary and transient modes). Mashinostroyeniye, Moscow Mitrokhin VT (1974) Vybor parametrov i raschet tsentrostremitel’noy turbiny na statsionarnykh i perekhodnykh rezhimakh (Parameter selection and calculation of a centripetal turbine in stationary and transient modes). Mashinostroyeniye, Moscow
14.
Zurück zum Zitat Shabarov AB, Tarasov VV (1982) K voprosu profilirovaniya rabochego kolesa tsentrostremitel’noy turbiny (On the profiling of the impeller of a centripetal turbine). Izv vuzov Mashinostr 1:101–105 Shabarov AB, Tarasov VV (1982) K voprosu profilirovaniya rabochego kolesa tsentrostremitel’noy turbiny (On the profiling of the impeller of a centripetal turbine). Izv vuzov Mashinostr 1:101–105
15.
Zurück zum Zitat Sirotkin YaA (1963) Raschet osesimmetrichnogo vikhrevogo techeniya nevyazkoy szhimayemoy zhidkosti v radial’nykh turbomashinakh (Calculation of the axisymmetric vortex flow of an inviscid compressible fluid in radial turbomachines). Izv akad nauk SSSR Otd tekh nauk Mekh mashinostr 3:16–28 Sirotkin YaA (1963) Raschet osesimmetrichnogo vikhrevogo techeniya nevyazkoy szhimayemoy zhidkosti v radial’nykh turbomashinakh (Calculation of the axisymmetric vortex flow of an inviscid compressible fluid in radial turbomachines). Izv akad nauk SSSR Otd tekh nauk Mekh mashinostr 3:16–28
16.
Zurück zum Zitat Shlikhting G (1974) Teoriya pogranichnogo sloya (The theory of the boundary layer). Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury, Moscow Shlikhting G (1974) Teoriya pogranichnogo sloya (The theory of the boundary layer). Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury, Moscow
17.
Zurück zum Zitat Loytsyanskiy LG (1962) Laminarnyy pogranichnyy sloy (Laminar boundary layer). Gosudarstvennoye izdatel’stvo fiziko-matematicheskoy literatury, Moscow Loytsyanskiy LG (1962) Laminarnyy pogranichnyy sloy (Laminar boundary layer). Gosudarstvennoye izdatel’stvo fiziko-matematicheskoy literatury, Moscow
18.
Zurück zum Zitat Passar AV, Lashko VA (2013) Analiticheskiy obzor prostranstvennykh metodov rascheta turbiny (Analytical review of spatial methods of turbine calculation). Sprav Inzhenernyy zh priloz 9:13–24 Passar AV, Lashko VA (2013) Analiticheskiy obzor prostranstvennykh metodov rascheta turbiny (Analytical review of spatial methods of turbine calculation). Sprav Inzhenernyy zh priloz 9:13–24
19.
Zurück zum Zitat Wu CH (1952) A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial and mi xed flow types. Trans ASME 74(8):1363–1380 Wu CH (1952) A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial and mi xed flow types. Trans ASME 74(8):1363–1380
20.
Zurück zum Zitat Fershalov AY (2011) Povysheniye effektivnosti rabochikh koles sudovykh osevykh maloraskhodnykh turbin (Increasing the efficiency of impellers of axle low-flow turbines). Dissertation, Dal’nevostochnyy gosudarstvennyy tekhnicheskiy universitet Fershalov AY (2011) Povysheniye effektivnosti rabochikh koles sudovykh osevykh maloraskhodnykh turbin (Increasing the efficiency of impellers of axle low-flow turbines). Dissertation, Dal’nevostochnyy gosudarstvennyy tekhnicheskiy universitet
21.
Zurück zum Zitat Sukhomlinov IYA (2010) Razrabotka i realizatsiya metodov rascheta kholodil’nykh tsentrobezhnykh kompressorov (Development and implementation of methods for calculating refrigerating centrifugal compressors). Kompress tekh pnevm 2:25–30 Sukhomlinov IYA (2010) Razrabotka i realizatsiya metodov rascheta kholodil’nykh tsentrobezhnykh kompressorov (Development and implementation of methods for calculating refrigerating centrifugal compressors). Kompress tekh pnevm 2:25–30
22.
Zurück zum Zitat Dovgal’ AV, Kozlov VV (1983) Vliyaniye akusticheskikh vozmushcheniy na strukturu techeniya v pogranichnom sloye s neblagopriyatnym gradiyentom davleniya (Influence of acoustic perturbations on the flow structure in a boundary layer with an unfavorable pressure gradient). Izv Akad Nauk SSSR Mekh zhidkosti gaza 2:8–52 Dovgal’ AV, Kozlov VV (1983) Vliyaniye akusticheskikh vozmushcheniy na strukturu techeniya v pogranichnom sloye s neblagopriyatnym gradiyentom davleniya (Influence of acoustic perturbations on the flow structure in a boundary layer with an unfavorable pressure gradient). Izv Akad Nauk SSSR Mekh zhidkosti gaza 2:8–52
Metadaten
Titel
Method of Energy Efficiency Increase of Low Power Radial Impeller Micromachines
verfasst von
A. Bobkov
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95630-5_203

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.