Skip to main content

2019 | OriginalPaper | Buchkapitel

10. Microbial Fuel Cell: Sustainable Green Technology for Bioelectricity Generation and Wastewater Treatment

verfasst von : Shachi Shah, V. Venkatramanan, Ram Prasad

Erschienen in: Sustainable Green Technologies for Environmental Management

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Global Environmental Change and the rapid exhaustion of non-renewable energy sources like coal, and petroleum products have kindled the necessity of humankind for the invention of viable and efficient sustainable green technologies for harvesting energy resources. Microbial Fuel Cell (MFC) technology offers an effective carbon neutral alternative for bioelectricity generation. This environmentally benign technology capitalizes the ability of electrogenic bacteria to produce electricity from chemical energy produced from the degradation of organic substrates including wastewater. Bioelectricity generation by electrogenic bacteria is influenced by factors like nature/type of substrate, concentration of substrate, hydrogen ion concentration, organic loading rate and internal resistance. Of late, studies in the field of substrates for MFCs demonstrate that a diverse group of organic sources can be used as a substrate for microbes and consequently, sustainable energy can be produced. MFC-based systems found applications in hydrogen production, environmental sensors, seawater desalination, bioremediation, and microbial electro-synthesis and energy recovery. In this chapter, an insight has been given to the principles, components, upscaling, and potential applications of MFC as green and clean technology for bioelectricity generation and waste reduction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Berchmans, S. (2018). Microbial fuel cell as alternate power tool: Potential and challenges. In D. Das (Ed.), Microbial fuel cell. Cham: Springer. Berchmans, S. (2018). Microbial fuel cell as alternate power tool: Potential and challenges. In D. Das (Ed.), Microbial fuel cell. Cham: Springer.
Zurück zum Zitat Chandrasekhar, K., & Venkata Mohan, S. (2012). Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresource Technology, 110, 517–525.CrossRef Chandrasekhar, K., & Venkata Mohan, S. (2012). Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresource Technology, 110, 517–525.CrossRef
Zurück zum Zitat Chandrasekhar, K., Amulya, K., & Venkata Mohan, S. (2015). Solid phase bio-electro fermentation of food waste to harvest value-added products associated with waste remediation. Waste Management, 45, 57–65.CrossRef Chandrasekhar, K., Amulya, K., & Venkata Mohan, S. (2015). Solid phase bio-electro fermentation of food waste to harvest value-added products associated with waste remediation. Waste Management, 45, 57–65.CrossRef
Zurück zum Zitat Chandrasekhar, K., Kadier, A., Kumar, G., Nastro, R. A., & Jeevitha, V. (2018). Challenges in microbial fuel cell and future scope. In D. Das (Ed.), Microbial fuel cell. Cham: Springer. Chandrasekhar, K., Kadier, A., Kumar, G., Nastro, R. A., & Jeevitha, V. (2018). Challenges in microbial fuel cell and future scope. In D. Das (Ed.), Microbial fuel cell. Cham: Springer.
Zurück zum Zitat Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresources Bioprocessing, 3, 38.CrossRef Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresources Bioprocessing, 3, 38.CrossRef
Zurück zum Zitat Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.CrossRef Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.CrossRef
Zurück zum Zitat Fernando, E., Keshavarz, T., & Kyazze, G. (2012). Enhanced bio-decolourisation of acid orange by Shewanella oneidensis through co-metabolism in a microbial fuel cell. International Biodeterioration and Biodegradation, 72, 1–9.CrossRef Fernando, E., Keshavarz, T., & Kyazze, G. (2012). Enhanced bio-decolourisation of acid orange by Shewanella oneidensis through co-metabolism in a microbial fuel cell. International Biodeterioration and Biodegradation, 72, 1–9.CrossRef
Zurück zum Zitat Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D., & Li, B. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36, 876–884. https://doi.org/10.1016/j.ijhydene.2010.08.074.CrossRef Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D., & Li, B. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36, 876–884. https://​doi.​org/​10.​1016/​j.​ijhydene.​2010.​08.​074.CrossRef
Zurück zum Zitat Logan, B. E. (2008). Microbial fuel cell. New York: Wiley. Logan, B. E. (2008). Microbial fuel cell. New York: Wiley.
Zurück zum Zitat Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. https://doi.org/10.1021/es0605016.CrossRef Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. https://​doi.​org/​10.​1021/​es0605016.CrossRef
Zurück zum Zitat Nastro, R. A. (2014). Microbial fuel cells in waste treatment: Recent advances. International Journal of Performability Engineering, 10(4), 367–376. Nastro, R. A. (2014). Microbial fuel cells in waste treatment: Recent advances. International Journal of Performability Engineering, 10(4), 367–376.
Zurück zum Zitat Pandit, S., & Das, D. (2018). Principles of microbial fuel cell for the power generation. In D. Das (Ed.), Microbial fuel cell (pp. p21–p41). Cham: Springer.CrossRef Pandit, S., & Das, D. (2018). Principles of microbial fuel cell for the power generation. In D. Das (Ed.), Microbial fuel cell (pp. p21–p41). Cham: Springer.CrossRef
Zurück zum Zitat Park, D. H., & Zeikus, J. G. (1999). Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. Journal of Bacteriology, 181(8), 2403–2410. Park, D. H., & Zeikus, J. G. (1999). Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. Journal of Bacteriology, 181(8), 2403–2410.
Zurück zum Zitat Rosenbaum, M., Schro¨der, U., & Scholz, F. (2005). In situ electro oxidation of photobiological hydrogen in a photo bioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environmental Science & Technology, 39, 6328–6333. https://doi.org/10.1021/es0505447.CrossRef Rosenbaum, M., Schro¨der, U., & Scholz, F. (2005). In situ electro oxidation of photobiological hydrogen in a photo bioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environmental Science & Technology, 39, 6328–6333. https://​doi.​org/​10.​1021/​es0505447.CrossRef
Zurück zum Zitat Roy, S., Marzorati, S., Schievano, A., et al. (2017). Microbial fuel cells. In M. A. Abraham (Ed.), Encyclopedia of sustainable technologies (pp. 245–259). Amsterdam: Elsevier.CrossRef Roy, S., Marzorati, S., Schievano, A., et al. (2017). Microbial fuel cells. In M. A. Abraham (Ed.), Encyclopedia of sustainable technologies (pp. 245–259). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat Zhang, Y., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnology and Bioengineering, 108, 2339–2347. https://doi.org/10.1002/bit.23204.CrossRef Zhang, Y., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnology and Bioengineering, 108, 2339–2347. https://​doi.​org/​10.​1002/​bit.​23204.CrossRef
Zurück zum Zitat Zhou, M., Jin, T., Wu, Z., et al. (2012). Microbial fuel cells for bioenergy and bioproducts. In K. Gopalakrishnan, J. van Leeuwen, & R. Brown (Eds.), Sustainable bioenergy and bioproducts. Green energy and technology (pp. 131–171). London: Springer.CrossRef Zhou, M., Jin, T., Wu, Z., et al. (2012). Microbial fuel cells for bioenergy and bioproducts. In K. Gopalakrishnan, J. van Leeuwen, & R. Brown (Eds.), Sustainable bioenergy and bioproducts. Green energy and technology (pp. 131–171). London: Springer.CrossRef
Zurück zum Zitat Zhou, M., Wang, H., Hassett, D., & Gu, T. (2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 88, 508–518. https://doi.org/10.1002/jctb.4004.CrossRef Zhou, M., Wang, H., Hassett, D., & Gu, T. (2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 88, 508–518. https://​doi.​org/​10.​1002/​jctb.​4004.CrossRef
Metadaten
Titel
Microbial Fuel Cell: Sustainable Green Technology for Bioelectricity Generation and Wastewater Treatment
verfasst von
Shachi Shah
V. Venkatramanan
Ram Prasad
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2772-8_10