Skip to main content

2019 | OriginalPaper | Buchkapitel

Microglial Activation After Acute Spinal Cord Electrode Implant

verfasst von : Alice de Oliveira Barreto Suassuna, Mayara Jully Costa Silva, João Rodrigo de Oliveira, Valton da Silva Costa, Luiz da Costa Nepomuceno Filho, Fernanda Cristina de Mesquita, Ana Carolina Bione Kunicki, Manuela Sales Lima Nascimento, Mariana Ferreira Pereira de Araújo

Erschienen in: XXVI Brazilian Congress on Biomedical Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spinal cord stimulation has become a widely used and efficient alternative for the management of neurological disorders such as refractory chronic pain. The implanted devices likely induce activation of microglia, the cells responsible for the initiation of inflammatory response in the central nervous system. However, so far there are no available data on the microglial response following spinal cord epidural implants. This study intended to characterize the acute microglial response after spinal cord electrode implantation. To evaluate the acute response, a custom-made flat bipolar platinum electrode was implanted in the epidural space under the thoracic vertebra 4 (T4) in Wistar rats. Two days after implantation, morphological changes of microglia were evaluated by immunohistochemistry staining for ionized calcium-binding adaptor protein-1 (IBA-1) in spinal cord sections. Substantial loss of microglia ramification was found throughout the spinal cord at the implant site (T4). In contrast, microglia was not activated in areas distant from the implant such as cervical vertebra 4 (C4) and thoracic vertebra 11 (T11). This result interestingly demonstrates that semi-invasive implants in the spinal cord are able to induce the activation of microglial cells at the implant region. This work is the first step towards understanding the impact of epidural implants in spinal cord tissue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rossi, U.: The history of electrical stimulation of the nervous system for the control of pain. In: Electrical Stimulation and the Relief of Pain, pp. 5–16. Elsevier, Amsterdam (2003) Rossi, U.: The history of electrical stimulation of the nervous system for the control of pain. In: Electrical Stimulation and the Relief of Pain, pp. 5–16. Elsevier, Amsterdam (2003)
2.
Zurück zum Zitat Benabid, A.: Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 13(6), 696–706 (2003)CrossRef Benabid, A.: Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 13(6), 696–706 (2003)CrossRef
3.
Zurück zum Zitat Boccard, S.: Deep brain stimulation for chronic pain. J. Clin. Neurosci. 22(10), 1537–1543 (2015)CrossRef Boccard, S.: Deep brain stimulation for chronic pain. J. Clin. Neurosci. 22(10), 1537–1543 (2015)CrossRef
4.
Zurück zum Zitat Wallace, B.: Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg. Clin. N. Am. 15(3), 343–357 (2004)CrossRef Wallace, B.: Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg. Clin. N. Am. 15(3), 343–357 (2004)CrossRef
5.
Zurück zum Zitat Sackeim, H.: Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25(5), 713–728 (2001)CrossRef Sackeim, H.: Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25(5), 713–728 (2001)CrossRef
7.
Zurück zum Zitat Coles, A.: A review of brain stimulation methods to treat substance use disorders. Am. J. Addict. 27(2), 71–91 (2018)CrossRef Coles, A.: A review of brain stimulation methods to treat substance use disorders. Am. J. Addict. 27(2), 71–91 (2018)CrossRef
8.
Zurück zum Zitat Rigoard, P.: Multicolumn spinal cord stimulation lead implantation using an optic transligamentar minimally invasive technique. Neurosurgery 73(3), 550–553 (2013)CrossRef Rigoard, P.: Multicolumn spinal cord stimulation lead implantation using an optic transligamentar minimally invasive technique. Neurosurgery 73(3), 550–553 (2013)CrossRef
9.
Zurück zum Zitat Gomes, F.: Glia: dos velhos conceitos às novas funções de hoje e as que ainda virão. Estudos Avançados 27(77), 61–84 (2013)CrossRef Gomes, F.: Glia: dos velhos conceitos às novas funções de hoje e as que ainda virão. Estudos Avançados 27(77), 61–84 (2013)CrossRef
10.
Zurück zum Zitat Martínez, A.: O sistema imunológico (I): Conceitos gerais, adaptação ao exercício físico e implicações clínicas. Revista Brasileira de Medicina do Esporte 5(3), 120–125 (1999)CrossRef Martínez, A.: O sistema imunológico (I): Conceitos gerais, adaptação ao exercício físico e implicações clínicas. Revista Brasileira de Medicina do Esporte 5(3), 120–125 (1999)CrossRef
11.
Zurück zum Zitat Dheen, S.: Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14(11), 1189–1197 (2007)CrossRef Dheen, S.: Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 14(11), 1189–1197 (2007)CrossRef
12.
Zurück zum Zitat Heneka, M.: Neuroglia in neurodegeneration. Brain Res. Rev. 63(1–2), 189–211 (2010)CrossRef Heneka, M.: Neuroglia in neurodegeneration. Brain Res. Rev. 63(1–2), 189–211 (2010)CrossRef
13.
Zurück zum Zitat Szabo, M.: Development of the microglial phenotype in culture. Neuroscience 241, 280–295 (2013)CrossRef Szabo, M.: Development of the microglial phenotype in culture. Neuroscience 241, 280–295 (2013)CrossRef
14.
Zurück zum Zitat Suzumura, A.: Morphological transformation of microglia in vitro. Brain Res. 545(1–2), 301–306 (1991)CrossRef Suzumura, A.: Morphological transformation of microglia in vitro. Brain Res. 545(1–2), 301–306 (1991)CrossRef
15.
Zurück zum Zitat Nimmerjahn, A.: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726), 1314–1318 (2005) Nimmerjahn, A.: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726), 1314–1318 (2005)
16.
Zurück zum Zitat Hristovska, I.: Deciphering resting microglial morphology and process motility from a synaptic prospect. Front. Integr. Neurosci. 9, 73 (2016)CrossRef Hristovska, I.: Deciphering resting microglial morphology and process motility from a synaptic prospect. Front. Integr. Neurosci. 9, 73 (2016)CrossRef
17.
Zurück zum Zitat Autieri, M.: cDNA cloning of human allograft inflammatory factor-1: tissue distribution, cytokine induction, and mRNA expression in injured rat carotid arteries. Biochem. Biophys. Res. Commun. 228(1), 29–37 (1996)CrossRef Autieri, M.: cDNA cloning of human allograft inflammatory factor-1: tissue distribution, cytokine induction, and mRNA expression in injured rat carotid arteries. Biochem. Biophys. Res. Commun. 228(1), 29–37 (1996)CrossRef
18.
Zurück zum Zitat Szarowski, D.: Brain responses to micro-machined silicon devices. Brain Res. 983(1–2), 23–35 (2003)CrossRef Szarowski, D.: Brain responses to micro-machined silicon devices. Brain Res. 983(1–2), 23–35 (2003)CrossRef
19.
Zurück zum Zitat Biran, R.: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)CrossRef Biran, R.: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)CrossRef
20.
Zurück zum Zitat Polikov, V.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)CrossRef Polikov, V.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)CrossRef
21.
Zurück zum Zitat Woolley, A.: Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses. J. Neural Eng. 10(2), 026007 (2013)CrossRef Woolley, A.: Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses. J. Neural Eng. 10(2), 026007 (2013)CrossRef
22.
Zurück zum Zitat Vedam‐Mai, V.: Tissue response to deep brain stimulation and microlesion: a comparative study. Neuromodulation: Technol. Neural Interface 19(5), 451–458 (2016) Vedam‐Mai, V.: Tissue response to deep brain stimulation and microlesion: a comparative study. Neuromodulation: Technol. Neural Interface 19(5), 451–458 (2016)
23.
Zurück zum Zitat Wellman, S.: Understanding the inflammatory tissue reaction to brain implants to improve neurochemical sensing performance. ACS Chem. Neurosci. 8(12), 2578–2582 (2017)CrossRef Wellman, S.: Understanding the inflammatory tissue reaction to brain implants to improve neurochemical sensing performance. ACS Chem. Neurosci. 8(12), 2578–2582 (2017)CrossRef
24.
Zurück zum Zitat Mosher, K.: Neural progenitor cells regulate microglia functions and activity. Nat. Neurosci. 15(11), 1485–1487 (2012)CrossRef Mosher, K.: Neural progenitor cells regulate microglia functions and activity. Nat. Neurosci. 15(11), 1485–1487 (2012)CrossRef
25.
Zurück zum Zitat Kozai, T.: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials 35(34), 9255–9268 (2014)CrossRef Kozai, T.: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials 35(34), 9255–9268 (2014)CrossRef
26.
Zurück zum Zitat Potter, K.: Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J. Neural Eng. 9(4), 046020 (2012)MathSciNetCrossRef Potter, K.: Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J. Neural Eng. 9(4), 046020 (2012)MathSciNetCrossRef
27.
Zurück zum Zitat Leach, J.: Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front. Neuroeng. 2, 18 (2010)CrossRef Leach, J.: Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front. Neuroeng. 2, 18 (2010)CrossRef
28.
Zurück zum Zitat Williams, J.: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J. Neural Eng. 4(4), 410–423 (2007)CrossRef Williams, J.: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J. Neural Eng. 4(4), 410–423 (2007)CrossRef
29.
Zurück zum Zitat Degenhart, A.: Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 13(4), 046019 (2016)CrossRef Degenhart, A.: Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 13(4), 046019 (2016)CrossRef
30.
Zurück zum Zitat Sengul, G., Watson, C., Tanaka, I.: Atlas of the Spinal Cord, 1st edn. Elsevier, United Kingdom (2013) Sengul, G., Watson, C., Tanaka, I.: Atlas of the Spinal Cord, 1st edn. Elsevier, United Kingdom (2013)
31.
Zurück zum Zitat Prodanov, D.: Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 10, 11 (2016)CrossRef Prodanov, D.: Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 10, 11 (2016)CrossRef
32.
Zurück zum Zitat Ersen, A.: Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J. Neural Eng. 12(1), 016019 (2015)CrossRef Ersen, A.: Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J. Neural Eng. 12(1), 016019 (2015)CrossRef
33.
Zurück zum Zitat Kozai, T.: In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J. Neural Eng. 9(6), 066001 (2012)CrossRef Kozai, T.: In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J. Neural Eng. 9(6), 066001 (2012)CrossRef
34.
Zurück zum Zitat Hascup, E.: Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res. 1291, 12–20 (2009) Hascup, E.: Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res. 1291, 12–20 (2009)
35.
Zurück zum Zitat Biran, R.: The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. Part A 82(1), 169–178 (2007)CrossRef Biran, R.: The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. Part A 82(1), 169–178 (2007)CrossRef
Metadaten
Titel
Microglial Activation After Acute Spinal Cord Electrode Implant
verfasst von
Alice de Oliveira Barreto Suassuna
Mayara Jully Costa Silva
João Rodrigo de Oliveira
Valton da Silva Costa
Luiz da Costa Nepomuceno Filho
Fernanda Cristina de Mesquita
Ana Carolina Bione Kunicki
Manuela Sales Lima Nascimento
Mariana Ferreira Pereira de Araújo
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2517-5_91

Neuer Inhalt