Skip to main content
Erschienen in: Strength of Materials 3/2022

05.09.2022

Microstructure and Mechanical Properties of WC-Co-Ti(C0.5, N0.5)-Mo Cemented Carbides

verfasst von: G. Z. Sui, M. F. Gong, X. H. Wang, X. Q. Xia, D. Y. Mo, J. Dusza

Erschienen in: Strength of Materials | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports the synthesis and properties of WC-Co-Ti(C0.5, N0.5)-Mo cemented carbides with various compositions by employing powder metallurgy processing technology. The effect of adding Mo to cemented carbides on their microstructure and mechanical properties is investigated. The volume shrinkage, porosity, microstructure characteristics, hardness, and indentation toughness are examined by analytical balance, indentation method, scanning electron microscope, and X-ray diffractometer, respectively. By adding 0.5 weight percent Mo to cemented carbides, the density and hardness can be increased to 14.12 g/cm3 and 1804.56 kgf/mm2, respectively, while the indentation fracture toughness remains at a tolerable level of approximately 7.6 MPa·m1/2. Furthermore, the addition of Mo to the WC-Co-Ti(C0.5, N0.5) cemented carbides can effectively inhibit Co loss, reduce microdefects in the systems, and improve the microstructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Exner, “Physical and chemical nature of cemented carbides”, Int. Mater. Rev., 24, No. 1, 149–173 (1979).CrossRef H. Exner, “Physical and chemical nature of cemented carbides”, Int. Mater. Rev., 24, No. 1, 149–173 (1979).CrossRef
2.
Zurück zum Zitat B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals”, Int. Mater. Rev., 33, No. 1, 90–112 (1988).CrossRef B. Roebuck and E. Almond, “Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals”, Int. Mater. Rev., 33, No. 1, 90–112 (1988).CrossRef
3.
Zurück zum Zitat Y. Peng, H. Miao, and Z. Peng, “Development of TiCN-based cermets: mechanical properties and wear mechanism”, Int. J. Refract. Met. H., 39, 78–89 (2013).CrossRef Y. Peng, H. Miao, and Z. Peng, “Development of TiCN-based cermets: mechanical properties and wear mechanism”, Int. J. Refract. Met. H., 39, 78–89 (2013).CrossRef
4.
Zurück zum Zitat U. Rolander, G. Weinl, P. Lindahl, and H.-O. Andren, Titanium-Based Carbonitride Alloy with Controllable Wear Resistance and Toughness, EP0812367B1, European Patent Office (2002). U. Rolander, G. Weinl, P. Lindahl, and H.-O. Andren, Titanium-Based Carbonitride Alloy with Controllable Wear Resistance and Toughness, EP0812367B1, European Patent Office (2002).
5.
Zurück zum Zitat X. Cao, J. F. Jin, J. Y. Cao, et al., “Wear resistance of iron matrix composites reinforced by mixed-type particles”, J. Mater. Eng., 45, No. 8, 62–67 (2017). X. Cao, J. F. Jin, J. Y. Cao, et al., “Wear resistance of iron matrix composites reinforced by mixed-type particles”, J. Mater. Eng., 45, No. 8, 62–67 (2017).
6.
Zurück zum Zitat Q. Z. Wang, Y. Liu, D. H. Guan, et al., “Effect of tin content on microstructures and mechanical properties of Ti(C, N)/NiCr cermets”, Acta Metall. Sin., 41, No. 11, 1121–1126 (2005). Q. Z. Wang, Y. Liu, D. H. Guan, et al., “Effect of tin content on microstructures and mechanical properties of Ti(C, N)/NiCr cermets”, Acta Metall. Sin., 41, No. 11, 1121–1126 (2005).
7.
Zurück zum Zitat D. S. Bai, J. F. Sun, W. Y. Chen, et al., “Molecular dynamics simulation of the diffusion behaviour between Co and Ti and its effect on the wear of WC/Co tools when titanium alloy is machined”, Ceram. Int., 42, No. 15, 17754–17763 (2016).CrossRef D. S. Bai, J. F. Sun, W. Y. Chen, et al., “Molecular dynamics simulation of the diffusion behaviour between Co and Ti and its effect on the wear of WC/Co tools when titanium alloy is machined”, Ceram. Int., 42, No. 15, 17754–17763 (2016).CrossRef
8.
Zurück zum Zitat N. Li, X. F. Li, W. B. Zhang, et al., “Relation between the nitrogen gas pressure and structure characteristics of WC–Ti(C, N)–Co graded cemented carbides”, J. Alloy. Compd., 831, 154764 (2020).CrossRef N. Li, X. F. Li, W. B. Zhang, et al., “Relation between the nitrogen gas pressure and structure characteristics of WC–Ti(C, N)–Co graded cemented carbides”, J. Alloy. Compd., 831, 154764 (2020).CrossRef
9.
Zurück zum Zitat O. Eso, Z. Z. Fang, and A. Griffo, “Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co”, Int. J. Refract. Met. H., 25, No. 4, 286–292 (2007).CrossRef O. Eso, Z. Z. Fang, and A. Griffo, “Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co”, Int. J. Refract. Met. H., 25, No. 4, 286–292 (2007).CrossRef
10.
Zurück zum Zitat W. Zhang, Y. Liu, and Y. He, “Study on the cutting property of the coated cemented carbide tips with gradient structure”, Rare Metals and Cemented Carbides, 34, No. 3, 12–14 (2006). W. Zhang, Y. Liu, and Y. He, “Study on the cutting property of the coated cemented carbide tips with gradient structure”, Rare Metals and Cemented Carbides, 34, No. 3, 12–14 (2006).
11.
Zurück zum Zitat D. Mari, S. Bolognini, T. Viatte, et al., “Study of the mechanical properties of TiCN–Wc–Co hardmetals by the interpretation of internal friction spectra”, Int. J. Refract. Met. H., 19, Nos. 4–6, 257–265 (2001).CrossRef D. Mari, S. Bolognini, T. Viatte, et al., “Study of the mechanical properties of TiCN–Wc–Co hardmetals by the interpretation of internal friction spectra”, Int. J. Refract. Met. H., 19, Nos. 4–6, 257–265 (2001).CrossRef
12.
Zurück zum Zitat J. Glühmann, M. Schneewei_, H. van den Berg, et al., “Functionally graded WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals: metallurgy and performance”, Int. J. Refract. Met. H., 36, 38–45 (2013). J. Glühmann, M. Schneewei_, H. van den Berg, et al., “Functionally graded WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals: metallurgy and performance”, Int. J. Refract. Met. H., 36, 38–45 (2013).
13.
Zurück zum Zitat K. Choi, N. M. Hwang, and D.-Y. Kim, “Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition”, Powder Metall., 43, No. 2, 168–172 (2000).CrossRef K. Choi, N. M. Hwang, and D.-Y. Kim, “Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition”, Powder Metall., 43, No. 2, 168–172 (2000).CrossRef
14.
Zurück zum Zitat W. Zhang, Y. Du, and Y. Peng, “Effect of TaC and NbC addition on the microstructure and hardness in graded cemented carbides: simulations and experiments”, Ceram. Int., 42, No. 1, 428–435 (2016).CrossRef W. Zhang, Y. Du, and Y. Peng, “Effect of TaC and NbC addition on the microstructure and hardness in graded cemented carbides: simulations and experiments”, Ceram. Int., 42, No. 1, 428–435 (2016).CrossRef
15.
Zurück zum Zitat Z. Zhao, J. W. Liu, H. G. Tang, et al., “Effect of Mo addition on the microstructure and properties of WC–Ni–Fe hard alloys”, J. Alloy. Compd., 646, 155–160 (2015).CrossRef Z. Zhao, J. W. Liu, H. G. Tang, et al., “Effect of Mo addition on the microstructure and properties of WC–Ni–Fe hard alloys”, J. Alloy. Compd., 646, 155–160 (2015).CrossRef
16.
Zurück zum Zitat H. S. Lian, M. F. Gong, M. S. Li, et al., “Influence of Mo content on microstructure and properties of WC-Co-Ti(C, N)-Ni-Mo cemented carbides”, Mater. Mech. Eng., 42, No. 11, 37–41 (2018). H. S. Lian, M. F. Gong, M. S. Li, et al., “Influence of Mo content on microstructure and properties of WC-Co-Ti(C, N)-Ni-Mo cemented carbides”, Mater. Mech. Eng., 42, No. 11, 37–41 (2018).
17.
Zurück zum Zitat G. R. Anstis, P. Chantikul, B. R. Lawn, et al., “A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements”, J. Am. Ceram. Soc., 64, No. 9, 533–538 (1981).CrossRef G. R. Anstis, P. Chantikul, B. R. Lawn, et al., “A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements”, J. Am. Ceram. Soc., 64, No. 9, 533–538 (1981).CrossRef
18.
Zurück zum Zitat D. Sivaprahasam, S. B. Chandrasekar, and R. Sundaresan, “Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering”, Int. J. Refract. Met. H., 25, No. 2, 144–152 (2007).CrossRef D. Sivaprahasam, S. B. Chandrasekar, and R. Sundaresan, “Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering”, Int. J. Refract. Met. H., 25, No. 2, 144–152 (2007).CrossRef
19.
Zurück zum Zitat J. Garcia, S. Englund, and F. Haglof, “Controlling cobalt capping in sintering process of cermets”, Int. J. Refract. Met. H., 62, 126–133 (2017).CrossRef J. Garcia, S. Englund, and F. Haglof, “Controlling cobalt capping in sintering process of cermets”, Int. J. Refract. Met. H., 62, 126–133 (2017).CrossRef
20.
Zurück zum Zitat H. J. Zhou, C. Z. Huang, B. Zou, et al., “Effects of sintering processes on the mechanical properties and microstructure of Ti(C, N)-based cermet cutting tool materials”, Int. J. Refract. Met. H., 47, 71–79 (2014).CrossRef H. J. Zhou, C. Z. Huang, B. Zou, et al., “Effects of sintering processes on the mechanical properties and microstructure of Ti(C, N)-based cermet cutting tool materials”, Int. J. Refract. Met. H., 47, 71–79 (2014).CrossRef
21.
Zurück zum Zitat Z. Lei, Y. Dong, and Y. Yang, “Influence of heat treatment on fracture mechanism of WC-Co cemented carbide”, Ordnance Mater. Sci. Eng., 03, 18–23 (1991). Z. Lei, Y. Dong, and Y. Yang, “Influence of heat treatment on fracture mechanism of WC-Co cemented carbide”, Ordnance Mater. Sci. Eng., 03, 18–23 (1991).
22.
Zurück zum Zitat X. R. Zhao, D. Zou, M. X. Zhang, et al., “Effect of sintering temperature on the microstructure and properties of ultra-fine Ti(C, N)-based cermets”, Mater. Trans., 57, 1615–1619 (2016).CrossRef X. R. Zhao, D. Zou, M. X. Zhang, et al., “Effect of sintering temperature on the microstructure and properties of ultra-fine Ti(C, N)-based cermets”, Mater. Trans., 57, 1615–1619 (2016).CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of WC-Co-Ti(C0.5, N0.5)-Mo Cemented Carbides
verfasst von
G. Z. Sui
M. F. Gong
X. H. Wang
X. Q. Xia
D. Y. Mo
J. Dusza
Publikationsdatum
05.09.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00422-2

Weitere Artikel der Ausgabe 3/2022

Strength of Materials 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.