Skip to main content

2015 | OriginalPaper | Buchkapitel

Modal Approach for Optimal Design of Two-Layer Piezoelectric Vibration Energy Harvesters

verfasst von : S. Olutunde Oyadiji, Xingyu Xiong

Erschienen in: Vibration Engineering and Technology of Machinery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A modal approach for the development of optimal configurations of two-layer piezoelectric vibration energy harvesters is presented. The harvester comprises a primary cantilevered beam to which a secondary beam is attached via a mass that is located along the length of the primary beam. An additional mass is located along the secondary beam. The two masses are used to tune the natural frequencies of the composite system and one of them also serves as a spacer between the two beams. By varying the dimensions of the beams and masses, and the locations of the masses along the beams, the harvester can produce close resonance frequencies and significant power output. Thus, the frequency bandwidth of significant power generation by the harvester can be extended. To judge the performance of any harvester configuration requires a full analysis, using the coupled electromechanical equations of the piezoelectric harvester, to determine the electrical power output. However, the analysis is lengthy and time consuming. To hasten the process, a modal approach has been developed. The approach determines the modal performance by means of the mass ratio (which represents the influence of modal mechanical behaviour on the power density directly) and the modal electromechanical coupling coefficient. The modal parameters required by the approach are computed numerically by finite element analysis. The modal approach is used to select harvester configurations with optimal or near-optimal performance, which are harvester configurations with close resonances and moderate values of mass ratio. A full analysis is subsequently performed to determine the power outputs of these harvester configurations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct 16:1–21CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater Struct 16:1–21CrossRef
2.
Zurück zum Zitat Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21:1867–1897CrossRef Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21:1867–1897CrossRef
3.
Zurück zum Zitat Roundy S, Zhang Y (2005) Toward self-tuning adaptive vibration based micro-generators. Smart Struct Devices Syst 2:5649 (SPIE, pp 373–384) Roundy S, Zhang Y (2005) Toward self-tuning adaptive vibration based micro-generators. Smart Struct Devices Syst 2:5649 (SPIE, pp 373–384)
4.
Zurück zum Zitat Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102CrossRef Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102CrossRef
5.
Zurück zum Zitat Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A (2008) Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors Actuators A 142:329–335CrossRef Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A (2008) Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors Actuators A 142:329–335CrossRef
6.
Zurück zum Zitat Qi SF, Shuttleworth R, Oyadiji SO, Wright J (2010) Design of a multiresonant beam for broadband piezoelectric energy harvesting. Smart Mater Struct 19:094009CrossRef Qi SF, Shuttleworth R, Oyadiji SO, Wright J (2010) Design of a multiresonant beam for broadband piezoelectric energy harvesting. Smart Mater Struct 19:094009CrossRef
7.
Zurück zum Zitat Ou Q, Chen X, Gutschmidt S, Wood A, Leigh N (2012) An experimentally validated double-mass piezoelectric cantilever model for broadband vibration-based energy harvesting. J Intell Mater Syst Struct 23:117–125CrossRef Ou Q, Chen X, Gutschmidt S, Wood A, Leigh N (2012) An experimentally validated double-mass piezoelectric cantilever model for broadband vibration-based energy harvesting. J Intell Mater Syst Struct 23:117–125CrossRef
8.
Zurück zum Zitat Zhou W, Penamalli GR, Zuo L (2012) An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater Struct 21:015014CrossRef Zhou W, Penamalli GR, Zuo L (2012) An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater Struct 21:015014CrossRef
9.
Zurück zum Zitat Chen ZS, Yang YM, Lu ZM, Luo YT (2013) Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams. Phys B 410(2013):5–12CrossRef Chen ZS, Yang YM, Lu ZM, Luo YT (2013) Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams. Phys B 410(2013):5–12CrossRef
10.
Zurück zum Zitat Erturk A, Hoffmann J, Inman DJ (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam mass structure with an application to UAVs. J Intell Mater Syst Struct 20:529–544CrossRef Erturk A, Hoffmann J, Inman DJ (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam mass structure with an application to UAVs. J Intell Mater Syst Struct 20:529–544CrossRef
11.
Zurück zum Zitat Karami MA, Inman DJ (2011) Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting. J Vib Acoust 133:011002-1CrossRef Karami MA, Inman DJ (2011) Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting. J Vib Acoust 133:011002-1CrossRef
12.
Zurück zum Zitat Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef
13.
Zurück zum Zitat Oyadiji SO, Qi S, Shuttleworth R (2009) Development of multiple cantilevered piezo fibre composite beams vibration energy harvester for wireless sensors. In: Proceedings of WCEAM2009, Athens, Greece Oyadiji SO, Qi S, Shuttleworth R (2009) Development of multiple cantilevered piezo fibre composite beams vibration energy harvester for wireless sensors. In: Proceedings of WCEAM2009, Athens, Greece
14.
Zurück zum Zitat Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19:1311CrossRef Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19:1311CrossRef
15.
Zurück zum Zitat Guyomar D, Sebald G, Pruvost S, Lallart M, Khodayari A, Richard C (2009) Energy harvesting from ambient vibrations and heat. Intell Mater Syst Struct 20:609–624 Guyomar D, Sebald G, Pruvost S, Lallart M, Khodayari A, Richard C (2009) Energy harvesting from ambient vibrations and heat. Intell Mater Syst Struct 20:609–624
16.
Zurück zum Zitat Xiong X, Oyadiji SO (2013) Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation. J Intell Mater Syst Struct 25(10):1177–1195 Xiong X, Oyadiji SO (2013) Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation. J Intell Mater Syst Struct 25(10):1177–1195
17.
Zurück zum Zitat Xiong X, Oyadiji SO (2014) Optimal design of two-layer vibration energy harvesters using a modal approach. Smart Mater Struct 23(3):035005CrossRef Xiong X, Oyadiji SO (2014) Optimal design of two-layer vibration energy harvesters using a modal approach. Smart Mater Struct 23(3):035005CrossRef
18.
Zurück zum Zitat Xiong X, Oyadiji SO (2014) A general modal approach for the development of optimal multi-layer stacked vibration energy harvesters. J Sound Vib 333(21):5386–5411 Xiong X, Oyadiji SO (2014) A general modal approach for the development of optimal multi-layer stacked vibration energy harvesters. J Sound Vib 333(21):5386–5411
Metadaten
Titel
Modal Approach for Optimal Design of Two-Layer Piezoelectric Vibration Energy Harvesters
verfasst von
S. Olutunde Oyadiji
Xingyu Xiong
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-09918-7_24

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.